Face detection and posture recognition in a real time tracking system

Author(s):  
Hung-Yuan Chung ◽  
Chun-Cheng Hou ◽  
Shou-Jyun Liang
Author(s):  
Yanbo Wang ◽  
Alena V. Savonenko ◽  
Ralph Etienne-Cummings

Author(s):  
MING-SHAUNG CHANG ◽  
JUNG-HUA CHOU

In this paper, we design a robust and friendly human–robot interface (HRI) system for our intelligent mobile robot based only on natural human gestures. It consists of a triple-face detection method and a fuzzy logic controller (FLC)-Kalman filter tracking system to check the users and predict their current position in a dynamic and cluttered working environment. In addition, through the combined classifier of the principal component analysis (PCA) and back-propagation artificial neural network (BPANN), single and successive commands defined by facial positions and hand gestures are identified for real-time command recognition after dynamic programming (DP). Therefore, the users can instruct this HRI system to make member recognition or expression recognition corresponding to their gesture commands, respectively based on the linear discriminant analysis (LDA) and BPANN. The experimental results prove that the proposed HRI system perform accurately in real-time face detection and tracking, and robustly react to the corresponding gesture commands at eight frames per second (fps).


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7780
Author(s):  
Johannes Link ◽  
Sébastien Guillaume ◽  
Bjoern M. Eskofier

For sports scientists and coaches, its crucial to have reliable tracking systems to improve athletes. Therefore, this study aimed to examine the validity of a wearable real-time tracking system (WRRTS) for the quantification of ski jumping. The tracking system consists of wearable trackers attached to the ski bindings of the athletes and fixed antennas next to the jumping hill. To determine the accuracy and precision of the WRRTS, four athletes of the German A or B National Team performed 35 measured ski jumps. The WRRTS was used to measure the 3D positions and ski angles during the jump. The measurements are compared with camera measurements for the in-flight parameters and the official video distance for the jumping distance to assess their accuracy. We statistically evaluated the different methods using Bland–Altman plots. We thereby find a mean absolute error of 0.46 m for the jumping distance, 0.12 m for the in-flight positions, and 0.8°, and 3.4° for the camera projected pitch and V-style opening angle, respectively. We show the validity of the presented WRRTS to measure the investigated parameters. Thus, the system can be used as a tracking system during training and competitions for coaches and sports scientists. The real-time feature of the tracking system enables usage during live TV broadcasting.


2020 ◽  
Vol 2 (Oktober) ◽  
pp. 29-36
Author(s):  
Agus Faesol ◽  
Imam Ashar ◽  
Gatut Yulisusianto

Abstract: In the world of technology that is increasing, then as humans we will not be separated from the process improvement that occurs. From year to year, it is certain that this increase will certainly. Increasingly rapidly occurring in communication technology. Communication technology has also penetrated the military world, especially in MQTT-based communications. In this research, MQTT-based technology is applied to implement real time tracking system on android. This system is used to send the longitude and latitude coordinates of the personnel so that these points can be known directly via android. From this pure experimental research method, the coordinate point data will continue to be monitored and the existence can be known continuously. This system is designed on a VPS server or Virtual Private Server, so that all devices even though none of the networks can communicate with  each  other  as  long  as  they  have  access  rights  for application user.


2020 ◽  
Author(s):  
Xiao Wang ◽  
Bo Li ◽  
Zhankuan Zhang

2019 ◽  
Vol 15 (4) ◽  
Author(s):  
Hassan M. Qassim ◽  
Abdulrahman K. Eesee ◽  
Omar T. Osman ◽  
Mohammed S. Jarjees

AbstractDisability, specifically impaired upper and/or lower limbs, has a direct impact on the patients’ quality of life. Nowadays, motorized wheelchairs supported by a mobility-aided technique have been devised to improve the quality of life of these patients by increasing their independence. This study aims to present a platform to control a motorized wheelchair based on face tilting. A real-time tracking system of face tilting using a webcam and a microcontroller circuit has been designed and implemented. The designed system is dedicated to control the movement directions of the motorized wheelchair. Four commands were adequate to perform the required movements for the motorized wheelchair (forward, right, and left, as well as stopping status). The platform showed an excellent performance regarding controlling the motorized wheelchair using face tilting, and the position of the eyes was shown as the most useful face feature to track face tilting.


2018 ◽  
Vol 18 (5) ◽  
pp. 2097-2106 ◽  
Author(s):  
Run Zhao ◽  
Qian Zhang ◽  
Dong Li ◽  
Haonan Chen ◽  
Dong Wang

Sign in / Sign up

Export Citation Format

Share Document