High-Frequency-Measurement-Based Circuit Modeling and Power/Ground Integrity Evaluation of Integrated Circuit Packages

2008 ◽  
Vol 31 (4) ◽  
pp. 910-918 ◽  
Author(s):  
Heungkyu Kim ◽  
Yungseon Eo
Author(s):  
Mark Kimball

Abstract This article presents a novel tool designed to allow circuit node measurements in a radio frequency (RF) integrated circuit. The discussion covers RF circuit problems; provides details on the Radio Probe design, which achieves an input impedance of 50Kohms and an overall attenuation factor of 0 dB; and describes signal to noise issues in the output signal, along with their improvement techniques. This cost-effective solution incorporates features that make it well suited to the task of differential measurement of circuit nodes within an RF IC. The Radio Probe concept offers a number of advantages compared to active probes. It is a single frequency measurement tool, so it complements, rather than replaces, active probes.


2018 ◽  
Vol 7 (2.6) ◽  
pp. 217
Author(s):  
B Sekharbabu ◽  
K Narsimha Reddy ◽  
S Sreenu

In this paper a -3 dB, 90-degreephase shift RF quadrature patch hybrid coupler is designed to operate at 2.4GHz. Hybrid coupler is a four-port device, that’s accustomed split a signaling with a resultant 90degrees’ section shift between output signals whereas maintaining high isolation between the output ports. The RF quadrature patch hybrid coupler is used in various radio frequency applications including mixers, power combiners, dividers, modulators and amplifiers. The desired hybrid coupler is designed using FR-4 substrate with 1.6mm height in High Frequency Structure Simulation (HFSS) and the same is fabricated and tested. The designed Hybrid coupler is examined in terms of parameters like insertion Loss, coupling factor and return Loss. The simulation and measurement results are compared. Major advantages of the RF quadrature patch hybrid couplers are that they are compatible with integrated circuit technology.


2020 ◽  
Author(s):  
Pieter-Jan Daems ◽  
Y. Guo ◽  
S. Sheng ◽  
C. Peeters ◽  
P. Guillaume ◽  
...  

Abstract Wind energy is one of the largest sources of renewable energy in the world. To further reduce the operations and maintenance (O&M) costs of wind farms, it is essential to be able to accurately pinpoint the root causes of different failure modes of interest. An example of such a failure mode that is not yet fully understood is white etching cracks (WEC). This can cause the bearing lifetime to be reduced to 5–10% of its design value. Multiple hypotheses are available in literature concerning its cause. To be able to validate or disprove these hypotheses, it is essential to have historic high-frequency measurement data (e.g., load and vibration levels) available. In time, this will allow linking to the history of the turbine operating data with failure data. This paper discusses the dynamic loading on the turbine during certain events (e.g., emergency stops, run-ups, and during normal operating conditions). By combining the number of specific events that each turbine has seen with the severity of each event, it becomes possible to assess which turbines are most likely to show signs of damage.


2018 ◽  
Vol 18 (13) ◽  
pp. 5238-5244 ◽  
Author(s):  
Andrew Feeney ◽  
Lei Kang ◽  
Steve Dixon

Sign in / Sign up

Export Citation Format

Share Document