A Three-Dimensional Kinematic and Dynamic Study of the Lower Limb During the Stance Phase of Gait Using an Homogeneous Matrix Approach

2004 ◽  
Vol 51 (1) ◽  
pp. 21-27 ◽  
Author(s):  
N. Doriot ◽  
L. Cheze
Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6478
Author(s):  
Iván Nacher Moltó ◽  
Juan Pardo Albiach ◽  
Juan José Amer-Cuenca ◽  
Eva Segura-Ortí ◽  
Willig Gabriel ◽  
...  

Each year, 50% of runners suffer from injuries. Consequently, more studies are being published about running biomechanics; these studies identify factors that can help prevent injuries. Scientific evidence suggests that recreational runners should use personalized biomechanical training plans, not only to improve their performance, but also to prevent injuries caused by the inability of amateur athletes to tolerate increased loads, and/or because of poor form. This study provides an overview of the different normative patterns of lower limb muscle activation and articular ranges of the pelvis during running, at self-selected speeds, in men and women. Methods: 38 healthy runners aged 18 to 49 years were included in this work. We examined eight muscles by applying two wearable superficial electromyography sensors and an inertial sensor for three-dimensional (3D) pelvis kinematics. Results: the largest differences were obtained for gluteus maximus activation in the first double float phase (p = 0.013) and second stance phase (p = 0.003), as well as in the gluteus medius in the second stance phase (p = 0.028). In both cases, the activation distribution was more homogeneous in men and presented significantly lower values than those obtained for women. In addition, there was a significantly higher percentage of total vastus medialis activation in women throughout the running cycle with the median (25th–75th percentile) for women being 12.50% (9.25–14) and 10% (9–12) for men. Women also had a greater range of pelvis rotation during running at self-selected speeds (p = 0.011). Conclusions: understanding the differences between men and women, in terms of muscle activation and pelvic kinematic values, could be especially useful to allow health professionals detect athletes who may be at risk of injury.


2004 ◽  
Vol 16 (02) ◽  
pp. 101-108 ◽  
Author(s):  
HSIU-CHEN LIN ◽  
TUNG-WU LU ◽  
HORNG-CHAUNG HSU

Being a common daily activity, stair locomotion places much higher loads on the lower limb than level walking does so a better understanding of the biomechanics of this activity is important for evaluation and treatment for patients with lower limb problems. The purpose of the present study was to investigate the three-dimensional dynamics and coordination of the joints of the lower limb during the stance phase of stair ascent and descent. Ten normal young adult subjects were recruited to ascend and descend stairs in a gait laboratory where the three-dimensional kinematic and kinetic data as well as muscle electromyography (EMG) were collected. The sagittal ranges of motion during stance phase of stair ascent were from 1.85° extension to 53.5° flexion for the hip, 13.1° to 60.1° flexion for the knee and 13.8° dorsiflexion to 14.0° plantarflexion for the ankle. Corresponding data for stair descent were 4.78( to 13.16( flexion for the hip, 8.3° to 77.6° flexion for the knee and 18.3° dorsiflexion to 27.4° plantarflexion for the ankle. Maximum extensor moments of 8.5% and 15.6% (Nm/BW/LL) were required at the hip and knee respectively during loading response while 19.4% (Nm/BW/LL) at the ankle shortly before toe-off. During stair descent, maximum extensor moments of about 4.4% were required at the hip during loading response and before toe-off while 13.3% and 15.2% (Nm/BW/LL) at the knee and ankle respectively before toe-off The joint angles, moments, and powers in the frontal and transverse planes were relatively small, except for hip abduction. The hip abductor moments and powers were significantly bigger than those of the knee and ankle in both stair activities. Joint powers and the corresponding muscle activation patterns in stair ascent were significantly different from those in descent, with concentric powers generated mostly during stair ascent and with eccentric powers stair descent. The differences of the movements of the lower limb during stair ascent and descent were due to different safety requirements and kinematic and kinetic constraints from the stairs. The complete description of the biomechanics of the lower extremity while performing stair locomotion will be helpful for the planning and evaluation of treatment programs for patients with lower limb problems.


2021 ◽  
Vol 3 ◽  
Author(s):  
David Sundström ◽  
Markus Kurz ◽  
Glenn Björklund

The aim of this study was to investigate the influence of slope and speed on lower-limb kinematics and energy cost of running. Six well-trained runners (VO2max 72 ± 6 mL·kg−1·min−1) were recruited for the study and performed (1) VO2max and energy cost tests and (2) an experimental running protocol at two speeds, 12 km·h−1 and a speed corresponding to 80% of VO2max (V80, 15.8 ± 1.3 km·h−1) on three different slopes (0°, −5°, and −10°), totaling six 5-min workload conditions. The workload conditions were randomly ordered and performed continuously. The tests lasted 30 min in total. All testing was performed on a large treadmill (3 × 5 m) that offered control over both speed and slope. Three-dimensional kinematic data of the right lower limb were captured during the experimental running protocol using eight infrared cameras with a sampling frequency of 150 Hz. Running kinematics were calculated using a lower body model and inverse kinematics approach. The generic model contained three, one, and two degrees of freedom at the hip, knee, and ankle joints, respectively. Oxygen uptake was measured throughout the experimental protocol. Maximum hip extension and flexion during the stance phase increased due to higher speed (p < 0.01 and p < 0.01, respectively). Knee extension at the touchdown and maximal knee flexion in the stance phase both increased on steeper downhill slopes (both p < 0.05). Ground contact time (GCT) decreased as the speed increased (p < 0.01) but was unaffected by slope (p = 0.73). Runners modified their hip movement pattern in the sagittal plane in response to changes in speed, whereas they altered their knee movement pattern during the touchdown and stance phases in response to changes in slope. While energy cost of running was unaffected by speed alone (p = 0.379), a shift in energy cost was observed for different speeds as the downhill gradient increased (p < 0.001). Energy cost was lower at V80 than 12 km·h−1 on a −5° slope but worse on a −10° slope. This indicates that higher speeds are more efficient on moderate downhill slopes (−5°), while lower speeds are more efficient on steeper downhill slopes (−10°).


2021 ◽  
pp. 1-5
Author(s):  
Hannah E. Wyatt ◽  
Gillian Weir ◽  
Carl Jewell ◽  
Richard E.A. van Emmerik ◽  
Joseph Hamill

Coordination variability (CV) is commonly analyzed to understand dynamical qualities of human locomotion. The purpose of this study was to develop guidelines for the number of trials required to inform the calculation of a stable mean lower limb CV during overground locomotion. Three-dimensional lower limb kinematics were captured for 10 recreational runners performing 20 trials each of preferred and fixed speed walking and running. Stance phase CV was calculated for 9 segment and joint couplings using a modified vector coding technique. The number of trials required to achieve a CV mean within 10% of 20 strides average was determined for each coupling and individual. The statistical outputs of mode (walking vs running) and speed (preferred vs fixed) were compared when informed by differing numbers of trials. A minimum of 11 trials were required for stable mean stance phase CV. With fewer than 11 trials, CV was underestimated and led to an oversight of significant differences between mode and speed. Future overground locomotion CV research in healthy populations using a vector coding approach should use 11 trials as a standard minimum. Researchers should be aware of the notable consequences of an insufficient number of trials for overall study findings.


Radiology ◽  
2008 ◽  
Vol 247 (3) ◽  
pp. 887-895 ◽  
Author(s):  
Mathias A. Müller ◽  
Dieter Mayer ◽  
Burkhardt Seifert ◽  
Borut Marincek ◽  
Jürgen K. Willmann

2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Jianghui Qin ◽  
Dongyang Chen ◽  
Zhihong Xu ◽  
Dongquan Shi ◽  
Jin Dai ◽  
...  

Purpose.To determine whether the sulcus angle and the lateral to medial facet ratio correlate with patella lateral displacement and tilt in patients without patella instability.Methods.Computed tomography images of the lower limb of 64 patients without known arthropathy were collected. Three-dimensional models of the lower limb with a unified coordinate system were rebuilt by using Mimics software. The sulcus angle, lateral to medial facet ratio, lateral trochlear inclination of the patellar groove, tibial tuberosity-trochlear groove (TT-TG) distance, bisect offset index, and lateral tilt of the patella were measured. Pearson’s correlation test was used to determine the relationship between the aforementioned parameters.Results.Data from 51 patients were analyzed. The sulcus angle was negatively correlated with lateral tilt inclination (p<0.001,r=0.8406) and positively correlated with the bisect offset index (p=0.003,r=0.634) and patellar tilt (p=0.03,r=0.551); the lateral to medial facet ratio was positively correlated with TT-TG distance (p=0.003,r=0.643) and bisect offset index (p=0.026,r=0.559).Conclusion.The sulcus angle and lateral to medial facet ratio of the patellar groove can influence patella tracking in patients with stable knee joints.


2018 ◽  
Vol 43 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Ingrid Skaaret ◽  
Harald Steen ◽  
Terje Terjesen ◽  
Inger Holm

Background: Different types of ankle-foot orthoses are commonly used following lower limb surgery in children with bilateral spastic cerebral palsy. After three-dimensional gait analysis 1 year postoperatively, many children are recommended continued use of ankle-foot orthoses. Objectives: Our aims were to quantify the impact of ankle-foot orthoses on gait 1 year postoperatively and evaluate predictors for clinically important improvement. Study design: Prospective cohort study. Methods: A total of 34 ambulating children with bilateral cerebral palsy, with mean age 11 years (range 6–17), comprising 12 girls and 22 boys, were measured with three-dimensional gait analysis preoperatively (barefoot) and 1 year postoperatively (barefoot and with ankle-foot orthoses). Outcome was evaluated using gait profile score, key kinematic, kinetic and temporal–spatial variables in paired sample comparisons. Logistic regression was used to evaluate predictors for clinically important improvement with orthoses (⩾1.6° change in gait profile score). Results: Walking barefoot 1 year postoperatively, major improvements were seen in gait profile score and key variables. With ankle-foot orthoses, there were significantly improved step length and velocity, additional moderate reduction/improvement in gait profile score and knee moments and decreased stance ankle dorsiflexion compared to barefoot. Children using ground reaction ankle-foot orthoses ( n = 14) decreased stance knee flexion from 13.9° walking barefoot to 8.2° with orthoses. High gait profile score and more gait dysfunction preoperatively were significant predictors of clinically important improvement walking with orthoses. Conclusion: The results indicate improved gait function walking with ankle-foot orthoses versus barefoot 1 year after lower limb surgery. Stronger impact of ankle-foot orthoses was found in children with more pronounced gait dysfunction preoperatively. Clinical relevance The 1-year postoperative three-dimensional gait analysis is a useful method to assess treatment outcome after lower limb surgery in children with bilateral cerebral palsy and could also guide clinicians whether further treatment with ankle-foot orthoses is indicated, using clinically important differences as thresholds to evaluate their impact on gait.


Author(s):  
P. Allard ◽  
P.S. Thiry ◽  
M. Duhaime ◽  
G. Geoffroy

SUMMARY:Orthogonal stereoradiographs are frequently utilized in determining three-dimensional geometrical parameters of human body segments. They have been applied here in the estimation of the length and elongation of the ligaments of the normal foot. Three small spherical metallic markers were respectively encrusted into the tibia and fibula, the seven bones of the tarsus and into the five metatarsals of an amputed lower limb to identify uniquely their spatial location. The foot was then positioned on a rotating platform. Standardized antero-posterior and lateral radiographs were taken. Afterwards the foot was dissected and the proximal and distal insertions of most of its ligaments were located by means of spherical markers. A second series of orthogonal radiographs were taken of each of the fourteen bones. The radiographs were digitized. The length of each ligament and elongation for a simple and complex movements were calculated by means of a computer program. The results of a simple movement of rotation representing a normal 20° dorsiflexion at the talocrural joint and of complex movements of rotation simulating an abnormal high arch such as encountered in Friedreich’s ataxia are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document