Selective Flexibility: Creating Domain-Specific Reconfigurable Arrays

Author(s):  
M. Stojilovic ◽  
D. Novo ◽  
L. Saranovac ◽  
P. Brisk ◽  
P. Ienne
2021 ◽  
Vol 18 (3) ◽  
pp. 1-25
Author(s):  
George Charitopoulos ◽  
Dionisios N. Pnevmatikatos ◽  
Georgi Gaydadjiev

Executing complex scientific applications on Coarse-Grain Reconfigurable Arrays ( CGRAs ) promises improvements in execution time and/or energy consumption compared to optimized software implementations or even fully customized hardware solutions. Typical CGRA architectures contain of multiple instances of the same compute module that consist of simple and general hardware units such as ALUs, simple processors. However, generality in the cell contents, while convenient for serving a wide variety of applications, penalizes performance and energy efficiency. To that end, a few proposed CGRAs use custom logic tailored to a particular application’s specific characteristics in the compute module. This approach, while much more efficient, restricts the versatility of the array. To date, versatility at hardware speeds is only supported with Field programmable gate arrays (FPGAs), that are reconfigurable at a very fine grain. This work proposes MC-DeF, a novel Mixed-CGRA Definition Framework targeting a Mixed-CGRA architecture that leverages the advantages of CGRAs by utilizing a customized cell array, and those of FPGAs by incorporating a separate LUT array used for adaptability. The framework presented aims to develop a complete CGRA architecture. First, a cell structure and functionality definition phase creates highly customized application/domain specific CGRA cells. Then, mapping and routing phases define the CGRA connectivity and cell-LUT array transactions. Finally, an energy and area estimation phase presents the user with area occupancy and energy consumption estimations of the final design. MC-DeF uses novel algorithms and cost functions driven by user defined metrics, threshold values, and area/energy restrictions. The benefits of our framework, besides creating fast and efficient CGRA designs, include design space exploration capabilities offered to the user. The validity of the presented framework is demonstrated by evaluating and creating CGRA designs of nine applications. Additionally, we provide comparisons of MC-DeF with state-of-the-art related works, and show that MC-DeF offers competitive performance (in terms of internal bandwidth and processing throughput) even compared against much larger designs, and requires fewer physical resources to achieve this level of performance. Finally, MC-DeF is able to better utilize the underlying FPGA fabric and achieves the best efficiency (measured in LUT/GOPs).


2008 ◽  
Vol 67 (2) ◽  
pp. 71-83 ◽  
Author(s):  
Yolanda A. Métrailler ◽  
Ester Reijnen ◽  
Cornelia Kneser ◽  
Klaus Opwis

This study compared individuals with pairs in a scientific problem-solving task. Participants interacted with a virtual psychological laboratory called Virtue to reason about a visual search theory. To this end, they created hypotheses, designed experiments, and analyzed and interpreted the results of their experiments in order to discover which of five possible factors affected the visual search process. Before and after their interaction with Virtue, participants took a test measuring theoretical and methodological knowledge. In addition, process data reflecting participants’ experimental activities and verbal data were collected. The results showed a significant but equal increase in knowledge for both groups. We found differences between individuals and pairs in the evaluation of hypotheses in the process data, and in descriptive and explanatory statements in the verbal data. Interacting with Virtue helped all students improve their domain-specific and domain-general psychological knowledge.


2008 ◽  
Vol 16 (3) ◽  
pp. 112-115 ◽  
Author(s):  
Stephan Bongard ◽  
Volker Hodapp ◽  
Sonja Rohrmann

Abstract. Our unit investigates the relationship of emotional processes (experience, expression, and coping), their physiological correlates and possible health outcomes. We study domain specific anger expression behavior and associated cardio-vascular loads and found e.g. that particularly an open anger expression at work is associated with greater blood pressure. Furthermore, we demonstrated that women may be predisposed for the development of certain mental disorders because of their higher disgust sensitivity. We also pointed out that the suppression of negative emotions leads to increased physiological stress responses which results in a higher risk for cardiovascular diseases. We could show that relaxation as well as music activity like singing in a choir causes increases in the local immune parameter immunoglobuline A. Finally, we are investigating connections between migrants’ strategy of acculturation and health and found e.g. elevated cardiovascular stress responses in migrants when they where highly adapted to the German culture.


2009 ◽  
Vol 25 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Jörg-Tobias Kuhn ◽  
Heinz Holling

The present study explores the factorial structure and the degree of measurement invariance of 12 divergent thinking tests. In a large sample of German students (N = 1328), a three-factor model representing verbal, figural, and numerical divergent thinking was supported. Multigroup confirmatory factor analyses revealed that partial strong measurement invariance was tenable across gender and age groups as well as school forms. Latent mean comparisons resulted in significantly higher divergent thinking skills for females and students in schools with higher mean IQ. Older students exhibited higher latent means on the verbal and figural factor, but not on the numerical factor. These results suggest that a domain-specific model of divergent thinking may be assumed, although further research is needed to elucidate the sources that negatively affect measurement invariance.


2020 ◽  
Author(s):  
Jamie Buck ◽  
Rena Subotnik ◽  
Frank Worrell ◽  
Paula Olszewski-Kubilius ◽  
Chi Wang

2012 ◽  
Author(s):  
Christine M. Szostak ◽  
Mark A. Pitt ◽  
Laura C. Dilley

Sign in / Sign up

Export Citation Format

Share Document