An Efficient Ensemble Learning Approach for Predicting Protein-Protein Interactions by Integrating Protein Primary Sequence and Evolutionary Information

Author(s):  
Zhu-Hong You ◽  
Wen-Zhun Huang ◽  
Shanwen Zhang ◽  
Yu-An Huang ◽  
Chang-Qing Yu ◽  
...  
2020 ◽  
Vol 17 (4) ◽  
pp. 271-286
Author(s):  
Chang Xu ◽  
Limin Jiang ◽  
Zehua Zhang ◽  
Xuyao Yu ◽  
Renhai Chen ◽  
...  

Background: Protein-Protein Interactions (PPIs) play a key role in various biological processes. Many methods have been developed to predict protein-protein interactions and protein interaction networks. However, many existing applications are limited, because of relying on a large number of homology proteins and interaction marks. Methods: In this paper, we propose a novel integrated learning approach (RF-Ada-DF) with the sequence-based feature representation, for identifying protein-protein interactions. Our method firstly constructs a sequence-based feature vector to represent each pair of proteins, viaMultivariate Mutual Information (MMI) and Normalized Moreau-Broto Autocorrelation (NMBAC). Then, we feed the 638- dimentional features into an integrated learning model for judging interaction pairs and non-interaction pairs. Furthermore, this integrated model embeds Random Forest in AdaBoost framework and turns weak classifiers into a single strong classifier. Meanwhile, we also employ double fault detection in order to suppress over-adaptation during the training process. Results: To evaluate the performance of our method, we conduct several comprehensive tests for PPIs prediction. On the H. pyloridataset, our method achieves 88.16% accuracy and 87.68% sensitivity, the accuracy of our method is increased by 0.57%. On the S. cerevisiaedataset, our method achieves 95.77% accuracy and 93.36% sensitivity, the accuracy of our method is increased by 0.76%. On the Humandataset, our method achieves 98.16% accuracy and 96.80% sensitivity, the accuracy of our method is increased by 0.6%. Experiments show that our method achieves better results than other outstanding methods for sequence-based PPIs prediction. The datasets and codes are available at https://github.com/guofei-tju/RF-Ada-DF.git.


Author(s):  
Tetsuya Sato ◽  
Yoshihiro Yamanishi ◽  
Katsuhisa Horimoto ◽  
Minoru Kanehisa ◽  
Hiroyuki Toh

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Li ◽  
Zheng Wang ◽  
Li-Ping Li ◽  
Zhu-Hong You ◽  
Wen-Zhun Huang ◽  
...  

AbstractVarious biochemical functions of organisms are performed by protein–protein interactions (PPIs). Therefore, recognition of protein–protein interactions is very important for understanding most life activities, such as DNA replication and transcription, protein synthesis and secretion, signal transduction and metabolism. Although high-throughput technology makes it possible to generate large-scale PPIs data, it requires expensive cost of both time and labor, and leave a risk of high false positive rate. In order to formulate a more ingenious solution, biology community is looking for computational methods to quickly and efficiently discover massive protein interaction data. In this paper, we propose a computational method for predicting PPIs based on a fresh idea of combining orthogonal locality preserving projections (OLPP) and rotation forest (RoF) models, using protein sequence information. Specifically, the protein sequence is first converted into position-specific scoring matrices (PSSMs) containing protein evolutionary information by using the Position-Specific Iterated Basic Local Alignment Search Tool (PSI-BLAST). Then we characterize a protein as a fixed length feature vector by applying OLPP to PSSMs. Finally, we train an RoF classifier for the purpose of identifying non-interacting and interacting protein pairs. The proposed method yielded a significantly better results than existing methods, with 90.07% and 96.09% prediction accuracy on Yeast and Human datasets. Our experiment show the proposed method can serve as a useful tool to accelerate the process of solving key problems in proteomics.


2019 ◽  
Vol 47 (W1) ◽  
pp. W338-W344 ◽  
Author(s):  
Carlos H M Rodrigues ◽  
Yoochan Myung ◽  
Douglas E V Pires ◽  
David B Ascher

AbstractProtein–protein Interactions are involved in most fundamental biological processes, with disease causing mutations enriched at their interfaces. Here we present mCSM-PPI2, a novel machine learning computational tool designed to more accurately predict the effects of missense mutations on protein–protein interaction binding affinity. mCSM-PPI2 uses graph-based structural signatures to model effects of variations on the inter-residue interaction network, evolutionary information, complex network metrics and energetic terms to generate an optimised predictor. We demonstrate that our method outperforms previous methods, ranking first among 26 others on CAPRI blind tests. mCSM-PPI2 is freely available as a user friendly webserver at http://biosig.unimelb.edu.au/mcsm_ppi2/.


2021 ◽  
Author(s):  
JinXuan Zhai ◽  
Ji-Yong An

Abstract Background:Protein–protein interactions (PPIs) are involved in a number of cellular processes and play a key role inside cells. The prediction of PPIs is an important task towards the understanding of many bioinformatics functions and applications, such as predicting protein functions, gene-disease associations and disease-drug associations. Given that high-throughput methods are expensive and time-consuming, it is a challenging task to develop efficient and accurate computational methods for predicting PPIs .Results:In the study, a novel computational approach named WELM-SURF was developed to predict PPIs. The proposed method used Position Specific Scoring Matrix (PSSM) to capture protein evolutionary information and employed Speed Up Robot Features (SURF) to extract key features from PSSM of protein sequence. Weighted Extreme Learning Machine (WELM) is featured with short training time and great ability to execute classification efficiently by optimizing the loss function of weight matrix. Therefore, WELM classifier was used to carry out classification. The cross-validation results show that WELM-SURF obtains 97.36% and 95.12% of average accuracy on yeast and human dataset, respectively. The prediction ability of WELM-SURF was also compared with those of ELM-SRUF, SVM-SURF and other existing approaches. The comparison results further verify that WELM-SURF is obviously better than other methods.Conclusion:The experimental results proved that the WELM-SURF method is very useful for predicting PPIs and can also be applied to other bioinformatics studies of protein.


2016 ◽  
Vol 25 (10) ◽  
pp. 1825-1833 ◽  
Author(s):  
Ji-Yong An ◽  
Fan-Rong Meng ◽  
Zhu-Hong You ◽  
Xing Chen ◽  
Gui-Ying Yan ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jie Pan ◽  
Li-Ping Li ◽  
Chang-Qing Yu ◽  
Zhu-Hong You ◽  
Zhong-Hao Ren ◽  
...  

Protein-protein interactions (PPIs) in plants are crucial for understanding biological processes. Although high-throughput techniques produced valuable information to identify PPIs in plants, they are usually expensive, inefficient, and extremely time-consuming. Hence, there is an urgent need to develop novel computational methods to predict PPIs in plants. In this article, we proposed a novel approach to predict PPIs in plants only using the information of protein sequences. Specifically, plants’ protein sequences are first converted as position-specific scoring matrix (PSSM); then, the fast Walsh–Hadamard transform (FWHT) algorithm is used to extract feature vectors from PSSM to obtain evolutionary information of plant proteins. Lastly, the rotation forest (RF) classifier is trained for prediction and produced a series of evaluation results. In this work, we named this approach FWHT-RF because FWHT and RF are used for feature extraction and classification, respectively. When applying FWHT-RF on three plants’ PPI datasets Maize, Rice, and Arabidopsis thaliana (Arabidopsis), the average accuracies of FWHT-RF using 5-fold cross validation were achieved as high as 95.20%, 94.42%, and 83.85%, respectively. To further evaluate the predictive power of FWHT-RF, we compared it with the state-of-art support vector machine (SVM) and K-nearest neighbor (KNN) classifier in different aspects. The experimental results demonstrated that FWHT-RF can be a useful supplementary method to predict potential PPIs in plants.


Sign in / Sign up

Export Citation Format

Share Document