Fretting Behavior of Gold-Plated Contact Materials Used in High-Frequency Vibration and Different Temperature Environment

Author(s):  
Wanbin Ren ◽  
Xu Zhang ◽  
Xiangxing Meng
Wear ◽  
2021 ◽  
pp. 203814
Author(s):  
Marco Sorgato ◽  
Rachele Bertolini ◽  
Andrea Ghiotti ◽  
Stefania Bruschi

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 472
Author(s):  
Jack Chih-Chieh Sheng ◽  
Brian De La Franier ◽  
Michael Thompson

The operation of biosensors requires surfaces that are both highly specific towards the target analyte and that are minimally subject to fouling by species present in a biological fluid. In this work, we further examined the thiosulfonate-based linker in order to construct robust and durable self-assembling monolayers (SAMs) onto hydroxylated surfaces such as silica. These SAMs are capable of the chemoselective immobilization of thiol-containing probes (for analytes) under aqueous conditions in a single, straightforward, reliable, and coupling-free manner. The efficacy of the method was assessed through implementation as a biosensing interface for an ultra-high frequency acoustic wave device dedicated to the detection of avidin via attached biotin. Fouling was assessed via introduction of interfering bovine serum albumin (BSA), IgG antibody, or goat serum. Improvements were investigated systematically through the incorporation of an oligoethylene glycol backbone employed together with a self-assembling diluent without a functional distal group. This work demonstrates that the incorporation of a diluent of relatively short length is crucial for the reduction of fouling. Included in this work is a comparison of the surface attachment of the linker to Si3N4 and AlN, both materials used in sensor technology.


Langmuir ◽  
2013 ◽  
Vol 29 (11) ◽  
pp. 3835-3845 ◽  
Author(s):  
Jeremy Blamey ◽  
Leslie Y. Yeo ◽  
James R. Friend

2009 ◽  
Vol 79-82 ◽  
pp. 1727-1730 ◽  
Author(s):  
Xiao Dong He ◽  
Xiang Hao Kong ◽  
Li Ping Shi ◽  
Ming Wei Li

ARMOR TPS panel is above the whole ARMOR TPS, and the metal honeycomb sandwich structure is the surface of the ARMOR TPS panel. So the metal honeycomb sandwich structure plays an important role in the ARMOR TPS, while it bears the flight dynamic pressure and stands against the flight dynamic calefaction. So the active environment of metal honeycomb sandwich structure is very formidable. We have to discuss any extreme situation, for reason of making sure aerial vehicle is safe. And high-frequency vibration is one of active environment. In this paper we have analyzed high-frequency vibration response of metal honeycomb sandwich structure. We processed high-frequency vibration experiment by simulating true aerial environment. Sequentially we operated high-frequency vibration experiment of metal honeycomb sandwich structure with cracks, notches and holes. Then finite-element analysis was performed by way of validating the experiment results. Haynes214 is a good high temperature alloy material of both face sheet and core at present, so we choose it in this paper.


Sign in / Sign up

Export Citation Format

Share Document