scholarly journals Combining Reflexes and External Sensory Information in a Neuromusculoskeletal Model to Control a Quadruped Robot

2021 ◽  
pp. 1-14
Author(s):  
Azhar Aulia Saputra ◽  
Janos Botzheim ◽  
Auke Jan Ijspeert ◽  
Naoyuki Kubota
2009 ◽  
Vol 06 (01) ◽  
pp. 33-46 ◽  
Author(s):  
LEI SUN ◽  
MAX Q.-H. MENG ◽  
SHUAI LI ◽  
HUAWEI LIANG ◽  
TAO MEI

This paper proposes a novel central pattern generator (CPG) model with proprioceptive mechanism and the dynamic connectivity mechanism. It not only contains the sensory information of the environment but also contains the information of the actuators and automatically tunes the parameters of CPG corresponding to the actuators information and inner sensory information. The position of the joints linked directly with the output of CPG is introduced to the CPG to find its proprioceptive system, spontaneously making the robot realize the actuator working status, further changing the CPG output to fit the change and decrease the influence of the problematic joints or actuators on the robot being controlled. So the damage would be avoided and self-protection is implemented. Its application on the locomotion control of a quadruped robot demonstrates the effectiveness of the proposed approach.


10.5772/6234 ◽  
2008 ◽  
Vol 5 (4) ◽  
pp. 41 ◽  
Author(s):  
Kiyotaka Izumi ◽  
Maki K. Habib ◽  
Keigo Watanabe ◽  
Ryoichi Sato

A robot functioning in an environment may exhibit various forms of behavior emerge from the interaction with its environment through sense, control and plan activities. Hence, this paper introduces a behaviour selection based navigation and obstacle avoidance algorithm with effective method for adapting robotic behavior according to the environment conditions and the navigated terrain. The developed algorithm enable the robot to select the suitable behavior in real-time to avoid obstacles based on sensory information through visual and ultrasonic sensors utilizing the robot's ability to step over obstacles, and move between surfaces of different heights. In addition, it allows the robot to react in appropriate manner to the changing conditions either by fine-tuning of behaviors or by selecting different set of behaviors to increase the efficiency of the robot over time. The presented approach has been demonstrated on quadruped robot in several different experimental environments and the paper provides an analysis of its performance.


10.5772/7231 ◽  
2009 ◽  
Vol 6 (3) ◽  
pp. 28 ◽  
Author(s):  
HRH Patel ◽  
A Amodeo ◽  
JV Joseph

A robot functioning in an environment may exhibit various forms of behavior emerge from the interaction with its environment through sense, control and plan activities. Hence, this paper introduces a behaviour selection based navigation and obstacle avoidance algorithm with effective method for adapting robotic behavior according to the environment conditions and the navigated terrain. The developed algorithm enable the robot to select the suitable behavior in real-time to avoid obstacles based on sensory information through visual and ultrasonic sensors utilizing the robot's ability to step over obstacles, and move between surfaces of different heights. In addition, it allows the robot to react in appropriate manner to the changing conditions either by fine-tuning of behaviors or by selecting different set of behaviors to increase the efficiency of the robot over time. The presented approach has been demonstrated on quadruped robot in several different experimental environments and the paper provides an analysis of its performance.


2021 ◽  
Vol 8 ◽  
Author(s):  
Azhar Aulia Saputra ◽  
Naoyuki Takesue ◽  
Kazuyoshi Wada ◽  
Auke Jan Ijspeert ◽  
Naoyuki Kubota

There are currently many quadruped robots suited to a wide range of applications, but traversing some terrains, such as vertical ladders, remains an open challenge. There is still a need to develop adaptive robots that can walk and climb efficiently. This paper presents an adaptive quadruped robot that, by mimicking feline structure, supports several novel capabilities. We design a novel paw structure and several point-cloud-based sensory structures incorporating a quad-composite time-of-flight sensor and a dual-laser range finder. The proposed robot is equipped with physical and cognitive capabilities which include: 1) a dynamic-density topological map building with attention model, 2) affordance perception using the topological map, and 3) a neural-based locomotion model. The novel capabilities show strong integration between locomotion and internal–external sensory information, enabling short-term adaptations in response to environmental changes. The robot performed well in several situations: walking on natural terrain, walking with a leg malfunction, avoiding a sudden obstacle, climbing a vertical ladder. Further, we consider current problems and future development.


1999 ◽  
Vol 13 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Laurence Casini ◽  
Françoise Macar ◽  
Marie-Hélène Giard

Abstract The experiment reported here was aimed at determining whether the level of brain activity can be related to performance in trained subjects. Two tasks were compared: a temporal and a linguistic task. An array of four letters appeared on a screen. In the temporal task, subjects had to decide whether the letters remained on the screen for a short or a long duration as learned in a practice phase. In the linguistic task, they had to determine whether the four letters could form a word or not (anagram task). These tasks allowed us to compare the level of brain activity obtained in correct and incorrect responses. The current density measures recorded over prefrontal areas showed a relationship between the performance and the level of activity in the temporal task only. The level of activity obtained with correct responses was lower than that obtained with incorrect responses. This suggests that a good temporal performance could be the result of an efficacious, but economic, information-processing mechanism in the brain. In addition, the absence of this relation in the anagram task results in the question of whether this relation is specific to the processing of sensory information only.


SIGMA TEKNIKA ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 20
Author(s):  
Endang Susanti
Keyword(s):  

Robot adalah alat mekanik yang dapat melakukan tugas fisik baik melalui kontrol manusia maupun secara otomatis.. Salah satu contoh yaitu robot quadruped. Robot quadruped merupakan robot yang menirukan anatomi dari laba-laba dalam proses geraknya. Pada perancangan robot quadruped menggunakan module bluetooth hc 05 sebagai pengontrol geraknya yang disingkronkan dengan smartphone sebagai remote controlnya. Robot quadruped juga ditambahkan pengaman berupa sensor utrasonik apabila terputusnya koneksi smarphone dengan robot quadruped, sensor utrasonik mengambil peranan untuk menghindari halagan agar tidak terjadi kerusakan pada robot. Jarak maksimal dari module Bluetooth 10 meter, kettika lebih dari 10 meter, koneksi akan terputus dan tidak dapat tekoneksi kembali Kata kunci: Teknologi, robot, quadruped, module bluetooth, sensor ultrasonik.


Sign in / Sign up

Export Citation Format

Share Document