TCAD/Physics-Based Analysis of High-Density Dual-BOX FD/SOI SRAM Cell With Improved Stability

2009 ◽  
Vol 56 (12) ◽  
pp. 3033-3040 ◽  
Author(s):  
Keunwoo Kim ◽  
Jente B. Kuang ◽  
Fadi H. Gebara ◽  
Hung C. Ngo ◽  
Ching-Te Chuang ◽  
...  
Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1718
Author(s):  
Neha Gupta ◽  
Ambika Prasad Shah ◽  
Sajid Khan ◽  
Santosh Kumar Vishvakarma ◽  
Michael Waltl ◽  
...  

This paper proposes an error-tolerant reconfigurable VDD (R-VDD) scaled SRAM architecture, which significantly reduces the read and hold power using the supply voltage scaling technique. The data-dependent low-power 10T (D2LP10T) SRAM cell is used for the R-VDD scaled architecture with the improved stability and lower power consumption. The R-VDD scaled SRAM architecture is developed to avoid unessential read and hold power using VDD scaling. In this work, the cells are implemented and analyzed considering a technologically relevant 65 nm CMOS node. We analyze the failure probability during read, write, and hold mode, which shows that the proposed D2LP10T cell exhibits the lowest failure rate compared to other existing cells. Furthermore, the D2LP10T cell design offers 1.66×, 4.0×, and 1.15× higher write, read, and hold stability, respectively, as compared to the 6T cell. Moreover, leakage power, write power-delay-product (PDP), and read PDP has been reduced by 89.96%, 80.52%, and 59.80%, respectively, compared to the 6T SRAM cell at 0.4 V supply voltage. The functional improvement becomes even more apparent when the quality factor (QF) is evaluated, which is 458× higher for the proposed design than the 6T SRAM cell at 0.4 V supply voltage. A significant improvement of power dissipation, i.e., 46.07% and 74.55%, can also be observed for the R-VDD scaled architecture compared to the conventional array for the respective read and hold operation at 0.4 V supply voltage.


Author(s):  
F. Masuoka ◽  
K. Ochii ◽  
M. Masuda ◽  
K. Kobayashi ◽  
T. Kondo

Sign in / Sign up

Export Citation Format

Share Document