Sharpness Enhancement of Stereo Images Using Binocular Just-Noticeable Difference

2012 ◽  
Vol 21 (3) ◽  
pp. 1191-1199 ◽  
Author(s):  
Seung-Won Jung ◽  
Jae-Yun Jeong ◽  
Sung-Jea Ko
Author(s):  
David-Octavio Muñoz-Ramírez ◽  
Beatriz-Paulina García-Salgado ◽  
Volodymyr Ponomaryov ◽  
Rogelio Reyes-Reyes ◽  
Sergiy Sadovnychiy ◽  
...  

Author(s):  
W. C. T. Dowell

Stereo imaging is not new to electron microscopy. Von Ardenne, who first published transmission pairs nearly forty hears ago, himself refers to a patent application by Ruska in 1934. In the early days of the electron microscope von Ardenne employed a pair of magnetic lenses to view untilted specimens but soon opted for the now standard technique of tilting the specimen with respect to the beam.In the shadow electron microscope stereo images can, of course, be obtained by tilting the specimen between micrographs. This obvious method suffers from the disadvantage that the magnification is very sensitive to small changes in specimen height which accompany tilting in the less sophisticated stages and it is also time consuming. A more convenient method is provided by horizontally displacing the specimen between micrographs. The specimen is not tilted and the technique is both simple and rapid, stereo pairs being obtained in less than thirty seconds.


2019 ◽  
Vol 2019 (1) ◽  
pp. 80-85
Author(s):  
Pooshpanjan Roy Biswas ◽  
Alessandro Beltrami ◽  
Joan Saez Gomez

To reproduce colors in one system which differs from another system in terms of the color gamut, it is necessary to use a color gamut mapping process. This color gamut mapping is a method to translate a specific color from a medium (screen, digital camera, scanner, digital file, etc) into another system having a difference in gamut volume. There are different rendering intent options defined by the International Color Consortium [5] to use the different reproduction goals of the user [19]. Any rendering intent used to reproduce colors, includes profile engine decisions to do it, i.e. looking for color accuracy, vivid colors or pleasing reproduction of images. Using the same decisions on different profile engines, the final visual output can look different (more than one Just Noticeable Difference[16]) depending on the profile engine used and the color algorithms that they implement. Profile performance substantially depends on the profiler engine used to create them. Different profilers provide the user with varying levels of liberty to design a profile for their color management needs and preference. The motivation of this study is to rank the performance of various market leading profiler engines on the basis of different metrics designed specifically to report the performance of particular aspects of these profiles. The study helped us take valuable decisions regarding profile performance without any visual assessment to decide on the best profiler engine.


Author(s):  
Rui Fan ◽  
Hengli Wang ◽  
Peide Cai ◽  
Jin Wu ◽  
Junaid Bocus ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 274
Author(s):  
Guobiao Yao ◽  
Alper Yilmaz ◽  
Li Zhang ◽  
Fei Meng ◽  
Haibin Ai ◽  
...  

The available stereo matching algorithms produce large number of false positive matches or only produce a few true-positives across oblique stereo images with large baseline. This undesired result happens due to the complex perspective deformation and radiometric distortion across the images. To address this problem, we propose a novel affine invariant feature matching algorithm with subpixel accuracy based on an end-to-end convolutional neural network (CNN). In our method, we adopt and modify a Hessian affine network, which we refer to as IHesAffNet, to obtain affine invariant Hessian regions using deep learning framework. To improve the correlation between corresponding features, we introduce an empirical weighted loss function (EWLF) based on the negative samples using K nearest neighbors, and then generate deep learning-based descriptors with high discrimination that is realized with our multiple hard network structure (MTHardNets). Following this step, the conjugate features are produced by using the Euclidean distance ratio as the matching metric, and the accuracy of matches are optimized through the deep learning transform based least square matching (DLT-LSM). Finally, experiments on Large baseline oblique stereo images acquired by ground close-range and unmanned aerial vehicle (UAV) verify the effectiveness of the proposed approach, and comprehensive comparisons demonstrate that our matching algorithm outperforms the state-of-art methods in terms of accuracy, distribution and correct ratio. The main contributions of this article are: (i) our proposed MTHardNets can generate high quality descriptors; and (ii) the IHesAffNet can produce substantial affine invariant corresponding features with reliable transform parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadia Paraskevoudi ◽  
Iria SanMiguel

AbstractThe ability to distinguish self-generated stimuli from those caused by external sources is critical for all behaving organisms. Although many studies point to a sensory attenuation of self-generated stimuli, recent evidence suggests that motor actions can result in either attenuated or enhanced perceptual processing depending on the environmental context (i.e., stimulus intensity). The present study employed 2-AFC sound detection and loudness discrimination tasks to test whether sound source (self- or externally-generated) and stimulus intensity (supra- or near-threshold) interactively modulate detection ability and loudness perception. Self-generation did not affect detection and discrimination sensitivity (i.e., detection thresholds and Just Noticeable Difference, respectively). However, in the discrimination task, we observed a significant interaction between self-generation and intensity on perceptual bias (i.e. Point of Subjective Equality). Supra-threshold self-generated sounds were perceived softer than externally-generated ones, while at near-threshold intensities self-generated sounds were perceived louder than externally-generated ones. Our findings provide empirical support to recent theories on how predictions and signal intensity modulate perceptual processing, pointing to interactive effects of intensity and self-generation that seem to be driven by a biased estimate of perceived loudness, rather by changes in detection and discrimination sensitivity.


Sign in / Sign up

Export Citation Format

Share Document