Concentration and Clusters of Black Liquor Thermoelectric Plants in Brazil

2021 ◽  
Vol 19 (12) ◽  
pp. 2122-2129
Author(s):  
Luiz Moreira Coelho Junior ◽  
Edvaldo Pereira Santos Junior ◽  
Anna Manuella Melo Nunes ◽  
Alvaro Nogueira de Souza ◽  
Luis Antonio Coimbra Borges ◽  
...  
Keyword(s):  
TAPPI Journal ◽  
2014 ◽  
Vol 13 (1) ◽  
pp. 9-19 ◽  
Author(s):  
RICARDO B. SANTOS ◽  
PETER W. HART

Brownstock washing is a complex, dynamic process in which dirty wash water or weak black liquor (dissolved organic and inorganic material obtained from the pulp cooking process) is separated from pulp fibers. The use of material balance techniques is of great importance to identify potential problems and determine how well the system is operating. The kraft pulping industry was the first known to combine pulp washing with the recovery of materials used and produced in the wood cooking process. The motivation behind materials recovery is economic, and more recently, environmentally driven. The chemicals used in the kraft process are expensive as compared to those used in the sulfite process. For the kraft process to be economically viable, it is imperative that a very high percentage of the cooking chemicals be recovered. To reach such high efficiency, a variety of washing systems and monitoring parameters have been developed. Antifoam additives and processing aids have also played an important role in increasing washing effectiveness. Antifoam materials help attain washing effectiveness by preventing entrapped air from forming in the system, which allows for an easier, unimpeded flow of filtrate through the screens and washers.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (8) ◽  
pp. 65-78 ◽  
Author(s):  
W.B.A. (SANDY) SHARP ◽  
W.J. JIM FREDERICK ◽  
JAMES R. KEISER ◽  
DOUGLAS L. SINGBEIL

The efficiencies of biomass-fueled power plants are much lower than those of coal-fueled plants because they restrict their exit steam temperatures to inhibit fireside corrosion of superheater tubes. However, restricting the temperature of a given mass of steam produced by a biomass boiler decreases the amount of power that can be generated from this steam in the turbine generator. This paper examines the relationship between the temperature of superheated steam produced by a boiler and the quantity of power that it can generate. The thermodynamic basis for this relationship is presented, and the value of the additional power that could be generated by operating with higher superheated steam temperatures is estimated. Calculations are presented for five plants that produce both steam and power. Two are powered by black liquor recovery boilers and three by wood-fired boilers. Steam generation parameters for these plants were supplied by industrial partners. Calculations using thermodynamics-based plant simulation software show that the value of the increased power that could be generated in these units by increasing superheated steam temperatures 100°C above current operating conditions ranges between US$2,410,000 and US$11,180,000 per year. The costs and benefits of achieving higher superheated steam conditions in an individual boiler depend on local plant conditions and the price of power. However, the magnitude of the increased power that can be generated by increasing superheated steam temperatures is so great that it appears to justify the cost of corrosion-mitigation methods such as installing corrosion-resistant materials costing far more than current superheater alloys; redesigning biomassfueled boilers to remove the superheater from the flue gas path; or adding chemicals to remove corrosive constituents from the flue gas. The most economic pathways to higher steam temperatures will very likely involve combinations of these methods. Particularly attractive approaches include installing more corrosion-resistant alloys in the hottest superheater locations, and relocating the superheater from the flue gas path to an externally-fired location or to the loop seal of a circulating fluidized bed boiler.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (8) ◽  
pp. 17-24 ◽  
Author(s):  
HAKIM GHEZZAZ ◽  
LUC PELLETIER ◽  
PAUL R. STUART

The evaluation and process risk assessment of (a) lignin precipitation from black liquor, and (b) the near-neutral hemicellulose pre-extraction for recovery boiler debottlenecking in an existing pulp mill is presented in Part I of this paper, which was published in the July 2012 issue of TAPPI Journal. In Part II, the economic assessment of the two biorefinery process options is presented and interpreted. A mill process model was developed using WinGEMS software and used for calculating the mass and energy balances. Investment costs, operating costs, and profitability of the two biorefinery options have been calculated using standard cost estimation methods. The results show that the two biorefinery options are profitable for the case study mill and effective at process debottlenecking. The after-tax internal rate of return (IRR) of the lignin precipitation process option was estimated to be 95%, while that of the hemicellulose pre-extraction process option was 28%. Sensitivity analysis showed that the after tax-IRR of the lignin precipitation process remains higher than that of the hemicellulose pre-extraction process option, for all changes in the selected sensitivity parameters. If we consider the after-tax IRR, as well as capital cost, as selection criteria, the results show that for the case study mill, the lignin precipitation process is more promising than the near-neutral hemicellulose pre-extraction process. However, the comparison between the two biorefinery options should include long-term evaluation criteria. The potential of high value-added products that could be produced from lignin in the case of the lignin precipitation process, or from ethanol and acetic acid in the case of the hemicellulose pre-extraction process, should also be considered in the selection of the most promising process option.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 9-14 ◽  
Author(s):  
AINO LEPPÄNEN ◽  
ERKKI VÄLIMÄKI ◽  
ANTTI OKSANEN

Under certain conditions, ash in black liquor forms a locally corrosive environment in a kraft recovery boiler. The ash also might cause efficiency losses and even boiler shutdown because of plugging of the flue gas passages. The most troublesome compounds in a fuel such as black liquor are potassium and chlorine because they change the melting behavior of the ash. Fouling and corrosion of the kraft recovery boiler have been researched extensively, but few computational models have been developed to deal with the subject. This report describes a computational fluid dynamics-based method for modeling the reactions between alkali metal compounds and for the formation of fine fume particles in a kraft recovery boiler furnace. The modeling method is developed from ANSYS/FLUENT software and its Fine Particle Model extension. We used the method to examine gaseous alkali metal compound and fine fume particle distributions in a kraft recovery boiler furnace. The effect of temperature and the boiler design on these variables, for example, can be predicted with the model. We also present some preliminary results obtained with the model. When the model is developed further, it can be extended to the superheater area of the kraft recovery boiler. This will give new insight into the variables that increase or decrease fouling and corrosion


TAPPI Journal ◽  
2015 ◽  
Vol 14 (2) ◽  
pp. 73-81 ◽  
Author(s):  
GISELY SAMISTRARO ◽  
PETER W. HART ◽  
JORGE LUIZ COLODETTE ◽  
RICARDO PAIM

Eucalyptus dunii has been commercially used in southern Brazil because of its relatively good frost tolerance and adequate productivity in the winter months. More recently, interest has grown in cultivating Eucalyptus benthamii Maiden & Cambage, which presents even superior frost tolerance compared to E. dunii and is highly productive as well. The quality of E. benthamii for pulp production is not yet proven. Thus, the chemical, anatomical, and technological aspects of pulp made from E. benthamii were compared with those of E. dunii for unbleached paper production. Samples of E. benthamii chips were obtained and analyzed for their basic density, chemical composition, higher heating value, trace elemental analysis, and chip size distribution. The chips were kraft cooked using conditions that produced a 74 ± 6 kappa number. The pulps were characterized for kappa number, yield, viscosity, and morphologic characteristics (e.g., length, wall thickness, and coarseness). Black liquor was analyzed for total solids, organics, inorganics, sodium sulfide, sodium hydroxide, and sodium carbonate. Brownstocks were beaten at five different energy levels in a Valley beater, and the physical strength properties of 120 g/m² handsheets were measured to develop a beater curve. The results of this study showed differences in delignification between the two woods and lower pulp yield for E. benthamii , which are related to their chemical compositions and basic densities. The E. benthamii studied in this work exhibited higher amounts of lignin and extractives, lower carbohydrate content, and lower basic density. However, cooking a blend of the two woods afforded good results in pulping and in physical pulp properties.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (4) ◽  
pp. 265-272 ◽  
Author(s):  
ROHAN BANDEKAR ◽  
JIM FREDERICK ◽  
JAROSLAV STAVIK

This study addresses the challenges a dissolving-grade pulp mill in Canada faced in 2014 in meeting its total reduced sulfur (TRS) gas emission limit. These emissions from the recovery boiler exit are controlled by passing the boiler exit gas through a TRS scrubber system. The mill employs a cyclonic direct contact evaporator to concentrate black liquor to firing solids content. The off-gases from the direct contact evaporator flow to the effluent gas control system that consists of a venturi scrubber, a packed bed scrubber, and a heat recovery unit. Emissions of TRS greater than the regulated limit of 15 ppm were observed for a 4-month period in 2014. The level of emissions measured during this period was significantly higher than about 12 ppm, the expected average value based on historic experience. The problem persisted from mid-June 2014 until the annual mill shutdown in October 2014. The main TRS components detected and the performance of the Teller scrubber in capturing them are examined. Other potential causes for these emissions are identified, including mechanical problems such as broken packing in the TRS packed bed scrubber, broken baffle plates in the scrubber, and cyclone evaporator leaks causing air ingress. Repairs were carried out during the mill shutdown, which eliminated the TRS emissions problem.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (7) ◽  
pp. 467-477
Author(s):  
PASI NIEMELAINEN ◽  
MARTTI PULLIAINEN ◽  
JARMO KAHALA ◽  
SAMPO LUUKKAINEN

Black liquor high solids (about 80%) concentrators have often been found to suffer from aggressive corrosion. In particular, the first and second effect bodies are susceptible to corrosion attacks resulting in tube leaks and wall thinning, which limit the availability and lifetime of evaporator lines. Corrosion dynamics and construction materials have been studied extensively within the pulp and paper industry to understand the corrosion process. However, it has been challenging to identify root causes for corrosion, which has limited proactive measures to minimize corrosion damage. Corrosion of the first phase concentrator was studied by defining the potential regions for passive area, stress corrosion cracking, pitting corrosion, and general corrosion. This was achieved by using a technique called polarization scan that reveals ranges for the passive area in which the equipment is naturally protected against corrosion. The open circuit potential, also known as corrosion potential, and linear polarization resistance of the metal were monitored online, which allowed for definition of corrosion risks for stainless steel 304L and duplex stainless steels 2205 and SAF 2906. An online temperature measurement added insight to the analysis. A process diagnostics tool was used to identify root causes of the corrosion attacks. Many of the root causes were related to process conditions triggering corrosion. Once the metal surface was activated, it was difficult to repassivate the metal naturally unless a sufficient potential range was reached.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (7) ◽  
pp. 459-464
Author(s):  
RICARDO SANTOS ◽  
PETER HART

An automated shower water control system has been implemented to reduce the volume and variability of weak black liquor being sent from the pulp mill to the evaporators. The washing controls attempt to balance the need for consistent and low soda carryover to the bleach plant with consistently high weak black liquor solids being sent to the evaporators. The washer controls were implemented on two bleachable grade hardwood lines (one with oxygen delignification, one without oxygen delignification) and one pine line. Implementation of the control program resulted in an increase in black liquor solids of 0.6 percentage points for the hardwood lines. Significant foam reduction was realized on the pine line since the pine black liquor solids were able to be consistently maintained just below the soap separation point. Low black liquor solids excursions to the evaporators were eliminated. Bleach plant carryover was stabilized and no negative impact on chemical consumption was noticed when controlling weak black liquor solids to recovery.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (7) ◽  
pp. 441-450
Author(s):  
HENRIK WALLMO, ◽  
ULF ANDERSSON ◽  
MATHIAS GOURDON ◽  
MARTIN WIMBY

Many of the pulp mill biorefinery concepts recently presented include removal of lignin from black liquor. In this work, the aim was to study how the change in liquor chemistry affected the evaporation of kraft black liquor when lignin was removed using the LignoBoost process. Lignin was removed from a softwood kraft black liquor and four different black liquors were studied: one reference black liquor (with no lignin extracted); two ligninlean black liquors with a lignin removal rate of 5.5% and 21%, respectively; and one liquor with maximum lignin removal of 60%. Evaporation tests were carried out at the research evaporator in Chalmers University of Technology. Studied parameters were liquor viscosity, boiling point rise, heat transfer coefficient, scaling propensity, changes in liquor chemical composition, and tube incrustation. It was found that the solubility limit for incrustation changed towards lower dry solids for the lignin-lean black liquors due to an increased salt content. The scaling obtained on the tubes was easily cleaned with thin liquor at 105°C. It was also shown that the liquor viscosity decreased exponentially with increased lignin outtake and hence, the heat transfer coefficient increased with increased lignin outtake. Long term tests, operated about 6 percentage dry solids units above the solubility limit for incrustation for all liquors, showed that the heat transfer coefficient increased from 650 W/m2K for the reference liquor to 1500 W/m2K for the liquor with highest lignin separation degree, 60%.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (6) ◽  
pp. 24-30 ◽  
Author(s):  
NIKLAS BERGLIN ◽  
PER TOMANI ◽  
HASSAN SALMAN ◽  
SOLVIE HERSTAD SVÄRD ◽  
LARS-ERIK ÅMAND

Processes have been developed to produce a solid biofuel with high energy density and low ash content from kraft lignin precipitated from black liquor. Pilot-scale tests of the lignin biofuel were carried out with a 150 kW powder burner and a 12 MW circulating fluidized bed (CFB) boiler. Lignin powder could be fired in a powder burner with good combustion performance after some trimming of the air flows to reduce swirl. Lignin dried to 10% moisture content was easy to feed smoothly and had less bridging tendencies in the feeding system than did wood/bark powder. In the CFB boiler, lignin was easily handled and cofired together with bark. Although the filter cake was broken into smaller pieces and fines, the combustion was not disturbed. When cofiring lignin with bark, the sulfur emission increased compared with bark firing only, but most of the sulfur was captured by calcium in the bark ash. Conventional sulfur capture also occurred with addition of limestone to the bed. The sulfur content in the lignin had a significantly positive effect on reducing the alkali chloride content in the deposits, thus reducing the high temperature corrosion risk.


Sign in / Sign up

Export Citation Format

Share Document