New Electromagnetic Lift Control Method for Magnetic Levitation Systems and Magnetic Bearings

2004 ◽  
Vol 40 (3) ◽  
pp. 1617-1624 ◽  
Author(s):  
K. Davey
Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 329
Author(s):  
Shuyue Zhang ◽  
Jihao Wu

The thrust position of the magnetic levitation rotor can be changed, bringing convenience to the practical application of cold compressors. This paper derives the mathematical model of asymmetric thrust magnetic bearings for a cold compressor and analyzes the changes in the system characteristics with the equilibrium position. By constructing PID controllers associated with the structural parameters of the magnetic bearing, the adaptive adjustment of the control parameters under different balanced position commands is realized. The simulation and experimental results prove that the gain-scheduled control method proposed in this paper can achieve a robust stability of the rotor in the range of 50 to 350 μm, and not at the cost of the response speed, adjustment time, and overshoot. The research results have reference significance for the structure design of asymmetric thrust magnetic bearings and play an important role in the commissioning and performance improvement of cold compressors.


2021 ◽  
Vol 11 (5) ◽  
pp. 2396
Author(s):  
Jong Suk Lim ◽  
Hyung-Woo Lee

This paper presents a method of utilizing a non-contact position sensor for the tilting and movement control of a rotor in a rotary magnetic levitation motor system. This system has been studied with the aim of having a relatively simple and highly clean alternative application compared to the spin coater used in the photoresist coating process in the semiconductor wafer process. To eliminate system wear and dust problems, a shaft-and-bearing-free magnetic levitation motor system was designed and a minimal non-contact position sensor was placed. An algorithm capable of preventing derailment and precise movement control by applying only control without additional mechanical devices to this magnetic levitation system was proposed. The proposed algorithm was verified through simulations and experiments, and the validity of the algorithm was verified by deriving a precision control result suitable for the movement control command in units of 0.1 mm at 50 rpm rotation drive.


Author(s):  
Takuya Nomoto ◽  
Daisuke Hunakoshi ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper presents a new modeling method and a control system design procedure for a flexible rotor with many elastic modes using active magnetic bearings. The purpose of our research is to let the rotor rotate passing over the 1st and the 2nd critical speeds caused by flexible modes. To achieve this, it is necessary to control motion and vibration of the flexible rotor simultaneously. The new modeling method named as Extended Reduced Order Physical Model is presented to express its motion and vibration uniformly. By using transfer function of flexible rotor-Active Magnetic Bearings system, we designed a Local Jerk Feedback Control system and conducted stability discrimination with root locus. In order to evaluate this modeling and control method, levitation experimentation is conducted.


2018 ◽  
Vol 105 ◽  
pp. 241-260 ◽  
Author(s):  
Mindong Lyu ◽  
Tao Liu ◽  
Zixi Wang ◽  
Shaoze Yan ◽  
Xiaohong Jia ◽  
...  

Author(s):  
Xiaoyun Sun ◽  
Ju Jiang ◽  
Ziyang Zhen ◽  
Ruonan Wei

Considering the precise landing demand for carrier-based aircraft flight control, this paper proposes an adaptive fuzzy landing control method for the strong time-varying, parameter uncertainty and various complex coupling in the actual state aircraft model. This method is applied to the flap channel to achieve direct lift control, and the fuzzy system is utilized to approximate the six-degree-of-freedom nonlinear system model of a carrier aircraft that is difficult to accurately describe, to achieve accurate tracking of the landing glideslope, and improve the landing accuracy. Lyapunov method was used to judge the stability of the adaptive fuzzy control algorithm. During the simulation, the airwake and deck motion disturbance were introduced to simulate the landing environment of the aircraft. The effectiveness of the landing control system was verified by the Matlab software. Monte-Carlo random test was utilized to carry out the landing point accuracy for the conventional control scheme and the adaptive fuzzy direct lift control scheme respectively. Through the response curve and landing point statistical results, it is confirmed that the direct lift control scheme has better control effect, and the landing precision has improvement compared with the conventional control scheme.


2012 ◽  
Vol 546-547 ◽  
pp. 992-996
Author(s):  
Chun Fang Liu ◽  
Bin Zang ◽  
Tong Wang

The maglev system is a typical nonlinear system, it is difficult to get the best control effect only by nonlinear control method. At first, the maglev system is linearized in this paper, for the classic PID control magnetic levitation system which exists the contradiction between fast and overshoot .This paper adopts the nonlinear tracking-differentiator-based PID controller to control the maglev system. Finally simulation results show that the nonlinear PID controller has fast response speed, no overshoot, and strong robustness in controlling the maglev system.


2016 ◽  
Vol 23 (2) ◽  
pp. 167-180 ◽  
Author(s):  
Peiling Cui ◽  
Jingxian He ◽  
Jiancheng Fang ◽  
Xiangbo Xu ◽  
Jian Cui ◽  
...  

Imbalance vibration control for rotor is the main factor affecting attitude control performance for satellite using magnetically suspended control moment gyro (MSCMG). The method for adaptive imbalance vibration control for the rotor of variable-speed MSCMG with active-passive magnetic bearings is investigated in this paper. Firstly, on the basis of feedforward compensation, a rotor model for the imbalance vibration of variable-speed MSCMG with active-passive magnetic bearings is built, and the main factor affecting imbalance vibration compensation is also analyzed. Then, power amplifier parameter modifier with control switches is designed to eliminate the effects of time-varying parameters on the imbalance vibration compensation precision. The adaptive imbalance vibration control based on this modifier not only has high compensation precision, but also can control the frequency of parameter adjustment according to the compensation precision. Besides, since the passive magnetic bearing displacement stiffness of the rotor of variable-speed MSCMG with active-passive magnetic bearings cannot be obtained accurately, displacement stiffness modifier is employed. Finally, stability analysis is made on the imbalance vibration control system, and the range of rotation speed to ensure system stability is derived. Simulation results show that, imbalance vibration control method proposed in this paper can suppress the imbalance vibration of the rotor of variable-speed MSCMG with active-passive magnetic bearings effectively and has high precision.


Sign in / Sign up

Export Citation Format

Share Document