scholarly journals Real-Time Identification of Dynamic Events in Power Systems Using PMU Data, and Potential Applications—Models, Promises, and Challenges

2017 ◽  
Vol 32 (1) ◽  
pp. 294-301 ◽  
Author(s):  
S. Brahma ◽  
R. Kavasseri ◽  
H. Cao ◽  
N. R. Chaudhuri ◽  
T. Alexopoulos ◽  
...  
2011 ◽  
Vol 486 ◽  
pp. 187-192
Author(s):  
Paul Johnson ◽  
Hyunjae Shin ◽  
Luke Harmer

The research has monitored both real time and concepts of human-powered products (HPP) ranging from conscious user interaction and fun concepts, to parasitic harvesting concepts. These ‘products’ have been characterised and mapped onto an ‘Interaction Map’ which is defined and described by two intersecting dimensions: one is defined by a sub/conscious user interaction and the other is defined by the mechanism of the product. This paper presents the results of a case study conducted with first year product design undergraduate students at Nottingham Trent University in January 2011. Students were briefed to select an electronic product and (re)design it into an interactive ‘off the grid product’, where its functional power is not being supplied by neither the power grid nor any kind of technology driven power units such as photovoltaic power cells. The results produced a comparative analysis, mapping student project concepts against results from real time HPP monitoring of existing products. Many HPP concepts arose from this study, and the design approach highlighted potential applications of human-power systems, more specific form of engineering requirements, as well as insight into further potential future technological approaches for HPP.


2014 ◽  
Vol 25 (4) ◽  
pp. 279-287 ◽  
Author(s):  
Stefan Hey ◽  
Panagiota Anastasopoulou ◽  
André Bideaux ◽  
Wilhelm Stork

Ambulatory assessment of emotional states as well as psychophysiological, cognitive and behavioral reactions constitutes an approach, which is increasingly being used in psychological research. Due to new developments in the field of information and communication technologies and an improved application of mobile physiological sensors, various new systems have been introduced. Methods of experience sampling allow to assess dynamic changes of subjective evaluations in real time and new sensor technologies permit a measurement of physiological responses. In addition, new technologies facilitate the interactive assessment of subjective, physiological, and behavioral data in real-time. Here, we describe these recent developments from the perspective of engineering science and discuss potential applications in the field of neuropsychology.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3274
Author(s):  
Jose Rueda Torres ◽  
Zameer Ahmad ◽  
Nidarshan Veera Kumar ◽  
Elyas Rakhshani ◽  
Ebrahim Adabi ◽  
...  

Future electrical power systems will be dominated by power electronic converters, which are deployed for the integration of renewable power plants, responsive demand, and different types of storage systems. The stability of such systems will strongly depend on the control strategies attached to the converters. In this context, laboratory-scale setups are becoming the key tools for prototyping and evaluating the performance and robustness of different converter technologies and control strategies. The performance evaluation of control strategies for dynamic frequency support using fast active power regulation (FAPR) requires the urgent development of a suitable power hardware-in-the-loop (PHIL) setup. In this paper, the most prominent emerging types of FAPR are selected and studied: droop-based FAPR, droop derivative-based FAPR, and virtual synchronous power (VSP)-based FAPR. A novel setup for PHIL-based performance evaluation of these strategies is proposed. The setup combines the advanced modeling and simulation functions of a real-time digital simulation platform (RTDS), an external programmable unit to implement the studied FAPR control strategies as digital controllers, and actual hardware. The hardware setup consists of a grid emulator to recreate the dynamic response as seen from the interface bus of the grid side converter of a power electronic-interfaced device (e.g., type-IV wind turbines), and a mockup voltage source converter (VSC, i.e., a device under test (DUT)). The DUT is virtually interfaced to one high-voltage bus of the electromagnetic transient (EMT) representation of a variant of the IEEE 9 bus test system, which has been modified to consider an operating condition with 52% of the total supply provided by wind power generation. The selected and programmed FAPR strategies are applied to the DUT, with the ultimate goal of ascertaining its feasibility and effectiveness with respect to the pure software-based EMT representation performed in real time. Particularly, the time-varying response of the active power injection by each FAPR control strategy and the impact on the instantaneous frequency excursions occurring in the frequency containment periods are analyzed. The performed tests show the degree of improvements on both the rate-of-change-of-frequency (RoCoF) and the maximum frequency excursion (e.g., nadir).


2020 ◽  
Vol 41 (S1) ◽  
pp. s367-s368
Author(s):  
Michael Korvink ◽  
John Martin ◽  
Michael Long

Background: The Bundled Payment Care Improvement Program is a CMS initiative designed to encourage greater collaboration across settings of care, especially as it relates to an initial set of targeted clinical episodes, which include sepsis and pneumonia. As with many CMS incentive programs, performance evaluation is retrospective in nature, resulting in after-the-fact changes in operational processes to improve both efficiency and quality. Although retrospective performance evaluation is informative, care providers would ideally identify a patient’s potential clinical cohort during the index stay and implement care management procedures as necessary to prevent or reduce the severity of the condition. The primary challenges for real-time identification of a patient’s clinical cohort are CMS-targeted cohorts are based on either MS-DRG (grouping of ICD-10 codes) or HCPCS coding—coding that occurs after discharge by clinical abstractors. Additionally, many informative data elements in the EHR lack standardization and no simple and reliable heuristic rules can be employed to meaningfully identify those cohorts without human review. Objective: To share the results of an ensemble statistical model to predict patient risks of sepsis and pneumonia during their hospital (ie, index) stay. Methods: The predictive model uses a combination of Bernoulli Naïve Bayes natural language processing (NLP) classifiers, to reduce text dimensionality into a single probability value, and an eXtreme Gradient Boosting (XGBoost) algorithm as a meta-model to collectively evaluate both standardized clinical elements alongside the NLP-based text probabilities. Results: Bernoulli Naïve Bayes classifiers have proven to perform well on short text strings and allow for highly explanatory unstructured or semistructured text fields (eg, reason for visit, culture results), to be used in a both comparative and generalizable way within the larger XGBoost model. Conclusions: The choice of XGBoost as the meta-model has the benefits of mitigating concerns of nonlinearity among clinical features, reducing potential of overfitting, while allowing missing values to exist within the data. Both the Bayesian classifier and meta-model were trained using a patient-level integrated dataset extracted from both a patient-billing and EHR data warehouse maintained by Premier. The data set, joined by patient admission-date, medical record number, date of birth, and hospital entity code, allows the presence of both the coded clinical cohort (derived from the MS-DRG) and the explanatory features in the EHR to exist within a single patient encounter record. The resulting model produced F1 performance scores of .65 for the sepsis population and .61 for the pneumonia population.Funding: NoneDisclosures: None


2021 ◽  
Vol 11 (14) ◽  
pp. 6620
Author(s):  
Arman Alahyari ◽  
David Pozo ◽  
Meisam Farrokhifar

With the recent advent of technology within the smart grid, many conventional concepts of power systems have undergone drastic changes. Owing to technological developments, even small customers can monitor their energy consumption and schedule household applications with the utilization of smart meters and mobile devices. In this paper, we address the power set-point tracking problem for an aggregator that participates in a real-time ancillary program. Fast communication of data and control signal is possible, and the end-user side can exploit the provided signals through demand response programs benefiting both customers and the power grid. However, the existing optimization approaches rely on heavy computation and future parameter predictions, making them ineffective regarding real-time decision-making. As an alternative to the fixed control rules and offline optimization models, we propose the use of an online optimization decision-making framework for the power set-point tracking problem. For the introduced decision-making framework, two types of online algorithms are investigated with and without projections. The former is based on the standard online gradient descent (OGD) algorithm, while the latter is based on the Online Frank–Wolfe (OFW) algorithm. The results demonstrated that both algorithms could achieve sub-linear regret where the OGD approach reached approximately 2.4-times lower average losses. However, the OFW-based demand response algorithm performed up to twenty-nine percent faster when the number of loads increased for each round of optimization.


Sign in / Sign up

Export Citation Format

Share Document