A Two-Stage Game Model for Combined Heat and Power Trading Market

2019 ◽  
Vol 34 (1) ◽  
pp. 506-517 ◽  
Author(s):  
Chenyu Wu ◽  
Wei Gu ◽  
Rui Bo ◽  
Ping Jiang ◽  
Zhi Wu ◽  
...  
2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Yan Long ◽  
Hongshan Zhao

Game theory has become an important tool to study the competition between oligopolistic enterprises. After combing the existing literature, it is found that there is no research combining two-stage game and nonlinear dynamics to analyze the competition between enterprises for advertising. Therefore, this paper establishes a two-stage game model to discuss the effect of the degree of firms’ advertising input on their profits. And the complexity of the system is analyzed using nonlinear dynamics. This paper analyzes and studies the dynamic game for two types of application network models: data transmission model and transportation network model. Under the time-gap ALOHA protocol, the noncooperative behavior of the insiders in the dynamic data transmission stochastic game is examined as well as the cooperative behavior. In this paper, the existence of Nash equilibrium and its solution algorithm are proved in the noncooperative case, and the “subgame consistency” of the cooperative solution (Shapley value) is discussed in the cooperative case, and the cooperative solution satisfying the subgame consistency is obtained by constructing the “allocation compensation procedure.” The cooperative solution is obtained by constructing the “allocation compensation procedure” to satisfy the subgame consistency. In this paper, we propose to classify the packets transmitted by the source nodes, and by changing the strategy of the source nodes at the states with different kinds of packets, we find that the equilibrium payment of the insider increases in the noncooperative game with the addition of the “wait” strategy. In the transportation dynamic network model, the problem of passenger flow distribution and the selection of service parameters of transportation companies are also studied, and a two-stage game theoretical model is proposed to solve the equilibrium price and optimal parameters under Wardrop’s criterion.


Author(s):  
Jinmian Chen ◽  
Yukun Cheng ◽  
Zhiqi Xu

Cloud/fog computing resource pricing is a new paradigm in the blockchain mining scheme, as the participants would like to purchase the cloud/fog computing resource to speed up their mining processes. In this paper, we propose a novel two-stage game to study the optimal price-based cloud/fog computing resource management, in which the cloud/fog computing resource provider (CFP) is the leader, setting the resource price in Stage I, and the mining pools act as the followers to decide their demands of the resource in Stage II. Since mining pools are bounded rational in practice, we model the dynamic interactions among them by an evolutionary game in Stage II, in which each pool pursues its evolutionary stable demand based on the observed price, through continuous learning and adjustments. Backward induction method is applied to analyze the sub-game equilibrium in each stage. Specifically in Stage II, we first build a general study framework for the evolutionary game model, and then provide a detailed theoretical analysis for a two-pool case to characterize the conditions for the existence of different evolutionary stable solutions. Referring to the real world, we conduct a series of numerical experiments, whose results validate our theoretical findings for the case of two mining pools. Additionally, the impacts from the size of mining block, the unit transaction fee and the price of token on the decision makings of participants are also discussed.


2013 ◽  
Vol 64 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Zhongbao Zhou ◽  
Liang Sun ◽  
Wenyu Yang ◽  
Wenbin Liu ◽  
Chaoqun Ma

2018 ◽  
Vol 6 (1-2) ◽  
pp. 50-65 ◽  
Author(s):  
Rittwik Chatterjee ◽  
Srobonti Chattopadhyay ◽  
Tarun Kabiraj

Spillovers of R&D outcome affect the R&D decision of a firm. The present paper discusses the R&D incentives of a firm when the extent of R&D spillover is private information to each firm. We construct a two-stage game involving two firms when the firms first decide simultaneously whether to invest in R&D or not, then they compete in quantity. Assuming general distribution function of firm types we compare R&D incentives of firms under alternative scenarios based on different informational structures. The paper shows that while R&D spillovers reduce R&D incentives under complete information unambiguously, however, it can be larger under incomplete information. JEL Classification: D43, D82, L13, O31


Author(s):  
Xiangfeng Yang ◽  
Kyoung Hoon Choi ◽  
Thi Minh Hoang Do ◽  
Gyei Kark Park
Keyword(s):  

Author(s):  
Pramod Kumar Goyal ◽  
Pawan Singh

In a heterogeneous wireless network (HWN) environment, performing an efficient vertical handoff requires the efficient qualitative evaluation of all stakeholders like wireless networks (WN) and mobile users (MU) and mutual selection of best WN-MU. In the literature, most of the work deals with both these requirements jointly in the techniques proposed by them for the vertical handoffs (VHO) in HWNs, leaving very little scope to manipulate the above requirements independently. This may result in inefficient vertical handoffs. Hence, this chapter proposed a generalized two-stage two players, iterative non-cooperative game model. This model presents a modular framework that separates the quantitative evaluation of WNs and MUs (at Stage 1) from the game formulation and solution (at Stage 2) for mutual selection of best WN-MU pair for VHO. The simulation results show a substantial reduction in the number of vertical handoffs with the proposed game theory-based two-stage model as compared to a single-stage non-game theory method like multiple attribute decision making.


Games ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 3 ◽  
Author(s):  
Achim Hagen ◽  
Pierre von Mouche ◽  
Hans-Peter Weikard

Coalition formation is often analysed in an almost non-cooperative way, as a two-stage game that consists of a first stage comprising membership actions and a second stage with physical actions, such as the provision of a public good. We formalised this widely used approach for the case where actions are simultaneous in each stage. Herein, we give special attention to the case of a symmetric physical game. Various theoretical results, in particular, for cartel games, are provided. As they are crucial, recent results on the uniqueness of coalitional equilibria of Cournot-like physical games are reconsidered. Various concrete examples are included. Finally, we discuss research strategies to obtain results about equilibrium coalition structures with abstract physical games in terms of qualitative properties of their primitives.


Sign in / Sign up

Export Citation Format

Share Document