A Novel Operation and Control Strategy for a Standalone Hybrid Renewable Power System

2013 ◽  
Vol 4 (2) ◽  
pp. 402-413 ◽  
Author(s):  
A. M. Osman Haruni ◽  
Michael Negnevitsky ◽  
Md. Enamul Haque ◽  
Ameen Gargoom
2018 ◽  
Author(s):  
Etinosa Ekomwenrenren ◽  
Hatem Alharbi ◽  
Taisir Elgorashi ◽  
Jaafar Elmirghani ◽  
Petros Aristidou

The cyber-physical nature of electric power systems has increased immensely over the last decades, with advanced communication infrastructure paving the way. It is now possible to design wide-area controllers, relying on remote monitor and control of devices, that can tackle power system stability problems more effectively than local controllers. However, their performance and security relies extensively on the communication infrastructure and can make power systems vulnerable to disturbances emerging on the cyber side of the system. In this paper, we investigate the effect of communication delays on the performance and security of wide-area damping controllers (WADC) designed to stabilise oscillatory modes in a Cyber-Physical Power System (CPPS). We propose a rule-based control strategy that combines wide-area and traditional local stabilising controllers to increase the performance and maintain the security of CPPS. The proposed strategy is validated on a reduced CPPS equivalent model of Great-Britain (GB).


2020 ◽  
Vol 10 (9) ◽  
pp. 3184
Author(s):  
Yuan-Kang Wu ◽  
Kuo-Ting Tang ◽  
Zheng Kuan Lin ◽  
Wen-Shan Tan

This work develops an underfrequency preventive control strategy for an islanded power system with a high penetration of wind power generation. First, the preventive control strategy uses the frequency nadir forecasting module to analyze the frequency stability under largest diesel generator tripping (N-1) contingency events. If predicted frequency nadir is too low, four frequency support methods are then analyzed and used for preventing potential frequency stability problem. They include generator rescheduling (GR), the use of battery energy storage system (BESS), direct load control (DLC) and emergency demand response program (EDRP). In terms of the GR method, the optimal diesel generator dispatch is obtained, with sufficient frequency stability and minimal fuel cost and start-up cost. In the BESS method, the optimal instantaneous power output from BESS is obtained based on its frequency support capability. With the DLC or EDRP method, the optimal contract-based load-shedding or the load-reduction to provide frequency support is obtained, respectively. Then, the operating costs of each method to support frequency are analyzed. The research methods and simulation results are very useful to the low-frequency protection of actual power systems with high renewable power generation. This work proposed a complete defense strategy in a microgrid system. It combines GR, BESS, DLC and EDRP. Therefore, the system operators have many options to implement their defense strategies, based on the operating costs of various methods. In other words, the proposed defense strategy provides a more flexible solution for the protection of micro grids with a high renewable power penetration. Therefore, the solution considers the system safety and economical aspects.


Sign in / Sign up

Export Citation Format

Share Document