The Design and Optimization of Low-Voltage Pseudo Differential Pair Operational Transconductance Amplifier in 130 nm CMOS Technology

Author(s):  
Fadi R. Shahroury ◽  
Ishraq Riad
2013 ◽  
Vol 411-414 ◽  
pp. 1645-1648
Author(s):  
Xiao Zong Huang ◽  
Lun Cai Liu ◽  
Jian Gang Shi ◽  
Wen Gang Huang ◽  
Fan Liu ◽  
...  

This paper presents a low-voltage differential operational transconductance amplifier (OTA) with enhanced DC gain and slew-rate. Based on the current mirror OTA topology, the optimization techniques are discussed in this work. The proposed structure achieves enhanced DC gain, unit gain frequency (UGF) and slew-rate (SR) with adding four devices. The design of the OTA is described with theory analysis. The OTA operates at the power supply of 1.8V. Simulation results for 0.18μm standard CMOS technology show that the DC gain increases from 60.6dB to 65dB, the UGF is optimized from 2.5MHz to 4.3MHz, the SR is enhanced from 0.88 V/μs to 4.8 V/μs with close power consumption dramatically.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ziad Alsibai ◽  
Salma Bay Abo Dabbous

A new ultra-low-voltage (LV) low-power (LP) bulk-driven quasi-floating-gate (BD-QFG) operational transconductance amplifier (OTA) is presented in this paper. The proposed circuit is designed using 0.18 μm CMOS technology. A supply voltage of ±0.3 V and a quiescent bias current of 5 μA are used. The PSpice simulation result shows that the power consumption of the proposed BD-QFG OTA is 13.4 μW. Thus, the circuit is suitable for low-power applications. In order to confirm that the proposed BD-QFG OTA can be used in analog signal processing, a BD-QFG OTA-based diodeless precision rectifier is designed as an example application. This rectifier employs only two BD-QFG OTAs and consumes only 26.8 μW.


2014 ◽  
Vol 62 (1) ◽  
pp. 77-84 ◽  
Author(s):  
B. Pankiewicz ◽  
S. Szczepański ◽  
M. Wójcikowski

Abstract In this paper, the MOS differential pair driven simultaneously from gates and bulk terminals is described. An approximated analytical solution of the voltage to current transfer function has been found for the proposed circuit. Four possible combinations of gate and bulk connections of the input signal are presented. Basing on the configuration giving the best linearity, the operational transconductance amplifier (OTA) has been designed and compared, by computer simulations, to the amplifier utilizing the gate driven classic MOS pair. 3rd order filters using the OTAs with linearized and simple MOS pair have been designed and the resulting parameters have been compared. Linearization through the presented simultaneous use of gate and bulk terminals seems to be useful for low voltage applications.


2021 ◽  
Vol 7 (4) ◽  
pp. 103-110
Author(s):  
Rajesh Durgam ◽  
S. Tamil ◽  
Nikhil Raj

In this paper, a high gain structure of operational transconductance amplifier is presented. For low voltage operation with improved frequency response bulk driven quasi-floating gate MOSFET is used at the input. Further for achieving high gain the modified self cascode structure is used at the output. Compared to conventional self cascode the modified self cascode structure used provides higher transconductance which helps in significant boosting of gain of the amplifier. The modification is achieved by employing quasi-floating gate transistor which helps in scaling of the threshold which as a result increases the drain-to-source voltage of linear mode transistor thus changing it to saturation. This change of mode boosts the effective transconductance of self cascode MOSFET. The proposed operational transconductance amplifier when compared to its conventional showed improvement in DC gain by 30dB and also the unity gain bandwidth increases by 6 fold. The MOS models used for amplifier design are of 0.18µm CMOS technology at supply of 0.5V.


Sign in / Sign up

Export Citation Format

Share Document