Design of a Domestic Controlled Voltage Stabilizer

Author(s):  
Ibrahima Gueye ◽  
Abdoulaye Kebe ◽  
Moustapha Diop
Keyword(s):  
Author(s):  
Aleksey Malahanov

A variant of the implementation of the behavioral model of a linear voltage stabilizer in the Spice language is presented. The results of modeling in static mode are presented. The simulation results are compared with experimental data and technical description of the chip manufacturer.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1596
Author(s):  
Peng Zhang ◽  
Yongqi Zhang ◽  
Xuan Wang ◽  
Jiaming Yang ◽  
Wenbin Han

Blending thermoplastic elastomers into polypropylene (PP) can make it have great potential for high-voltage direct current (HVDC) cable insulation by improving its toughness. However, when a large amount of thermoplastic elastomer is blended, the electrical strength of PP will be decreased consequently, which cannot meet the electrical requirements of HVDC cables. To solve this problem, in this paper, the inherent structure of thermoplastic elastomer SEBS was used to construct acetophenone structural units on its benzene ring through Friedel–Crafts acylation, making it a voltage stabilizer that can enhance the electrical strength of the polymer. The DC electrical insulation properties and mechanical properties of acetylated SEBS (Ac-SEBS)/PP were investigated in this paper. The results showed that by doping 30% Ac-SEBS into PP, the acetophenone structural unit on Ac-SEBS remarkably increased the DC breakdown field strength of SEBS/PP by absorbing high-energy electrons. When the degree of acetylation reached 4.6%, the DC breakdown field strength of Ac-SEBS/ PP increased by 22.4% and was a little higher than that of PP. Ac-SEBS, with high electron affinity, is also able to reduce carrier mobility through electron capture, resulting in lower conductivity currents in SEBS/PP and suppressing space charge accumulation to a certain extent, which enhances the insulation properties. Besides, the highly flexible Ac-SEBS can maintain the toughening effect of SEBS, resulting in a remarkable increase in the tensile strength and elongation at the break of PP. Therefore, Ac-SEBS/PP blends possess excellent insulation properties and mechanical properties simultaneously, which are promising as insulation materials for HVDC cables.


1979 ◽  
Vol 99 (3) ◽  
pp. 45-54
Author(s):  
Ikuo Kurihara ◽  
Nobuyoshi Hirai ◽  
Yasuji Sekine
Keyword(s):  

Author(s):  
Suwarno Suwarno ◽  
Tole Sutikno

<p>This paper presents the implementation of the buck-boost converter design which is a power electronics applications that can stabilize voltage, even though the input voltage changes. Regulator to stabilize the voltage using PWM pulse that triger pin 2 on XL6009. In this design of buck-boost converter is implemented using the XL6009, LM7815 and TIP2955. LM7815 as output voltage regulator at 15V with 1A output current, while TIP2955 is able to overcome output current up to 5A. When the LM7815 and TIP2955 are connected in parallel, the converter can increase the output current to 6A.. Testing is done using varied voltage sources that can be set. The results obtained from this design can be applied to PV (Photovoltaic) and WP (Wind Power), with changes in input voltage between 3-21V dc can produce output voltage 15V.</p>


2016 ◽  
Vol 19 (1) ◽  
Author(s):  
GEORGI GEORGIEV ◽  
NADEZHDA EVSTATIEVA

A comparative analysis has been carried out on two options of three-phase parametric current sources (inductive-capacitive stabilizers). Their capacities to operate in voltage stabilizer mode have been studied. Such capacities were proven and their conditions were defined. Theoretical results were experimentally checked and confirmed with satisfactory accuracy. Based on theoretical and experimental studies it was proven that the considered systems can operate in both modes – as current and voltage stabilizers.


1966 ◽  
Vol 9 (6) ◽  
pp. 853-854
Author(s):  
A. T. Dyuzhin ◽  
V. M. Simonov

Sign in / Sign up

Export Citation Format

Share Document