Two elements compact MIMO antenna with reconfigurable lower band and consistent high band for tablet applications

Author(s):  
Anthony Wang ◽  
Satish K. Sharma
Keyword(s):  
Author(s):  
Wan Noor Najwa Wan Marzudi ◽  
Zuhairiah Zainal Abidin ◽  
Mohd Zarar Mohd Jenu ◽  
Ma Yue
Keyword(s):  

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jian Zhang ◽  
Jun OuYang ◽  
Kai Zhi Zhang ◽  
Feng Yang

This paper demonstrates a novel dual-band operated MIMO antenna which consisted of planar monopole (main antenna) and 3D slot element (auxiliary antenna). The main antenna is printed on a 1.6 mm thick FR4 board, while the auxiliary antenna is fabricated with gold-coated copper. A lumped impedance network is applied to enhance matching effect at port1. From simulations by commercial software, it can be found that the proposed antenna is able to cover GSM800, GSM900 (lower band), and LTE/ WiMAX/WLAN (higher band) quite well. Good agreements between simulations and measurements are obtained. Corresponding measured results, antenna efficiency, peak gain, and radiation patterns, are presented at the same time. By equipping a passive decoupling element, the coupling power on the ground is radiated into free space, and great enhancement of isolation between antenna elements, especially for lower band, is achieved.


Author(s):  
Mahsa Zabetiakmal ◽  
Gholamreza Moradi ◽  
Ayaz Ghorbani

Abstract In this paper, a dual-band 8 × 8 multi-input multi-output (MIMO) array antenna operating in 3.5 GHz band (3400–3600 MHz) and 5.5 GHz band (5150–5925 MHz) for 5G mobile handset is presented. The proposed hybrid antenna includes a comb-shaped monopole and an L-shaped open slot antenna which are symmetrically located on the inner surface of the side-edge frame of smartphone. Pattern diversity is achieved that can mitigate envelope correlation coefficients (ECCs) and improve the MIMO system performances. The prototype of proposed dual-band eight-element MIMO antenna is fabricated and experimentally measured. The results show that isolation <−10 and <−15 dB, respectively in the lower band and high band without any additional decoupling element are achieved and the desired bands are satisfied under the condition of −6 dB impedance matching. Moreover, the essential parameters for evaluation of the MIMO system performance such as the ECC, mean effective gain (MEG), and ergodic channel capacity are calculated. Furthermore, the influence of user's hand on the radiation characteristics of proposed MIMO antenna are also investigated and discussed. Based on the result, the proposed MIMO antenna is a good candidate for use in future 5G applications.


Author(s):  
Subuh Pramono ◽  
Muhammad Hamka Ibrahim ◽  
Josaphat Tetuko Sri Sumantyo
Keyword(s):  

2018 ◽  
Vol 10 (3) ◽  
pp. 03005-1-03005-6 ◽  
Author(s):  
Rupali Kulkarni ◽  
◽  
Amit Pawbake ◽  
Ravindra Waykar ◽  
Ashok Jadhawar ◽  
...  

2018 ◽  
Vol 10 (3) ◽  
pp. 03001-1-03001-6 ◽  
Author(s):  
Bharat Gabhale ◽  
◽  
Ashok Jadhawar ◽  
Ajinkya Bhorde ◽  
Shruthi Nair ◽  
...  

2020 ◽  
Author(s):  
G Roopa ◽  
Krishna Chandra ◽  
B Raghavulu ◽  
Md Ismail ◽  
M Kumar Aditya

Sign in / Sign up

Export Citation Format

Share Document