Vorticity based flow analysis and visualization for Pelton turbine design optimization

Author(s):  
F. Sadlo ◽  
R. Peikert ◽  
E. Parkinson
Author(s):  
Pascal Prado ◽  
Yulia Panchenko ◽  
Jean-Yves Tre´panier ◽  
Christophe Tribes

Preliminary Multidisciplinary Design Optimization (PMDO) project addresses the development and implementation of the Multidisciplinary Design Optimization (MDO) methodology in the Concept/Preliminary stages of the gas turbine design process. These initial phases encompass a wide range of coupled engineering disciplines. The PMDO System is a software tool intended to integrate existing design and analysis tools, decompose coupled multidisciplinary problems and, therefore, allow optimizers to speed-up preliminary engine design process. The current paper is a brief presentation of the specifications for the PMDO System as well as a description of the prototype being developed and evaluated. The current assumed e xible architecture is based on three software components that can be installed on different computers: a Java/XML MultiServer, a Java Graphical User Interface and a commercial optimization software.


2018 ◽  
Author(s):  
Prakhar Kapoor ◽  
Aaron W. Costall ◽  
Nikolaos Sakellaridis ◽  
Jochem Hooijer ◽  
Rogier Lammers ◽  
...  

2021 ◽  
Vol 24 (2) ◽  
pp. 5-12
Author(s):  
Hyeon Soo Park ◽  
Ho Seong Yang ◽  
Batbeleg Tuvshintugs ◽  
In Cheol Kim ◽  
Young Ho Lee

Author(s):  
Chan-Sol Ahn ◽  
Kwang-Yong Kim

Design optimization of a transonic compressor rotor (NASA rotor 37) using the response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. The Baldwin-Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. It was found that the optimization process provides reliable design of a turbomachinery blade with reasonable computing time.


Author(s):  
Sohail R. Reddy ◽  
George S. Dulikravich ◽  
Helmut Sobieczky

The work presented in this paper used rigorous 3D flow-field analysis combined with multi-objective constrained shape design optimization for the design of bladelet (winglet) configurations for a three-blade propeller type wind turbine. The fluid flow analysis in this work was performed using 3D, steady, incompressible, turbulent flow Reynolds-averaged Navier-Stokes equations in the rotating frame of reference for each combination of a given wind turbine blade and a varying bladelet geometry. The free stream uniform wind speed in all cases was assumed to be 9 m s−1 and rotational speed was 12 rpm. These were off-design conditions for this rotor. The three simultaneous design optimization objectives were: a) maximize the coefficient of power, b) minimize the coefficient of thrust, and c) minimize twisting moment around the blade axis. The bladelet geometry was fully defined by using a small number of parameters. The optimization was carried out by creating a multi-dimensional response surface for each of the simultaneous objectives. The response surfaces were based on radial basis functions, where the support points were designs analyzed using the high fidelity CFD analysis of the full blade + bladelet geometry. The response surfaces were then coupled to a multi-objective optimization algorithm. The predicted values of the objective functions for the optimum designs were then again validated using the high fidelity computational fluid dynamics analysis code. Results for a Pareto optimized bladelet on a given blade indicate that more than 4% increase in the coefficient of power at minimal thrust force penalty is possible compared to the same wind turbine rotor blade without a bladelet.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Kamrul Hasan Rahi ◽  
Hemant Kumar Singh ◽  
Tapabrata Ray

Abstract Real-world design optimization problems commonly entail constraints that must be satisfied for the design to be viable. Mathematically, the constraints divide the search space into feasible (where all constraints are satisfied) and infeasible (where at least one constraint is violated) regions. The presence of multiple constraints, constricted and/or disconnected feasible regions, non-linearity and multi-modality of the underlying functions could significantly slow down the convergence of evolutionary algorithms (EA). Since each design evaluation incurs some time/computational cost, it is of significant interest to improve the rate of convergence to obtain competitive solutions with relatively fewer design evaluations. In this study, we propose to accomplish this using two mechanisms: (a) more intensified search by identifying promising regions through “bump-hunting,” and (b) use of infeasibility-driven ranking to exploit the fact that optimal solutions are likely to be located on constraint boundaries. Numerical experiments are conducted on a range of mathematical benchmarks and empirically formulated engineering problems, as well as a simulation-based wind turbine design optimization problem. The proposed approach shows up to 53.48% improvement in median objective values and up to 69.23% reduction in cost of identifying a feasible solution compared with a baseline EA.


Author(s):  
M. Rautenberg ◽  
M. Malobabic ◽  
A. Mobarak ◽  
M. Abdel Kader

A Clausius-Rankine-cycle has been proposed to recover waste heat from a piston engine. This waste heat is then used to supercharge the cylinders by means of a steam turbocharger. The advantage of using this steam turbocharger system is to avoid the losses due to the engine back pressure which accompany the use of the conventional exhaust gas turbocharger. The mass flow rate of turbines for steam turbochargers in the range from 1 to 10 kW is about 0.03 to 0.08 kg/s. This implies a special turbine design, characterised by partial admission and supersonic flow, which unfortunately leads to low turbine efficiencies. A small Pelton turbine for steam has been designed and produced. The turbine is connected to the radial compressor of a conventional exhaust gas turbocharger which works, in this case, as a brake to dissipate the generated turbine power. A special test rig has been built to carry out the experimental investigations on the proposed Pelton turbine. The test rig is supplied with superheated steam from the University’s power plant. Two different rotors for this Pelton turbine have been tested under the same operating conditions (rotor 2 see Fig. 1). Some experimental test results of a special Pelton turbine are presented and discussed in this report.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 379
Author(s):  
Xiang Zhang ◽  
Yinghou Jiao ◽  
Xiuquan Qu ◽  
Guanghe Huo ◽  
Zhiqian Zhao

The seal is designed to reduce leakage and improve the efficiency of gas turbine machines, and is an important technology that needs to be studied in gas turbine design. A series of seals were proposed to try to achieve this goal. However, due to the complex fluid dynamic performance of the seal-rotor system, the seal structure can obtain both the best leakage performance and best rotordynamic performance. This paper presents a detailed flow analysis of the hole diaphragm labyrinth seal (HDLS) at several whirl frequencies and several rotation speeds. The pressure drop, velocity, turbulence kinetic energy and leakage performance of the HDLS were discussed by simulations. An interesting exponential–type relationship between rotation speeds and leakage flow at different whirl frequencies was observed by curve fitting technology. A reverse flow rate was proposed to describe such an unusual phenomenon. Such a relationship can be used to further establish the leakage model of the HDLS and other similar seals.


Sign in / Sign up

Export Citation Format

Share Document