Cost-Effective Reliable Edge Computing Hardware Design Based on Module Simplification and Duplication: A Case Study on Vehicle Detection Based on Support Vector Machine

Author(s):  
Tong-Yu Hsieh ◽  
Hsin-Yung Shen ◽  
Chia-Teng Hsu
2013 ◽  
Vol 291-294 ◽  
pp. 2164-2168 ◽  
Author(s):  
Li Tian ◽  
Qiang Qiang Wang ◽  
An Zhao Cao

With the characteristic of line loss volatility, a research of line loss rate prediction was imperatively carried out. Considering the optimization ability of heuristic algorithm and the regression ability of support vector machine, a heuristic algorithm-support vector machine model is constructed. Case study shows that, compared with other heuristic algorithms’, the search efficiency and speed of genetic algorithm are good, and the prediction model is with high accuracy.


Author(s):  
Pratyush Kaware

In this paper a cost-effective sensor has been implemented to read finger bend signals, by attaching the sensor to a finger, so as to classify them based on the degree of bent as well as the joint about which the finger was being bent. This was done by testing with various machine learning algorithms to get the most accurate and consistent classifier. Finally, we found that Support Vector Machine was the best algorithm suited to classify our data, using we were able predict live state of a finger, i.e., the degree of bent and the joints involved. The live voltage values from the sensor were transmitted using a NodeMCU micro-controller which were converted to digital and uploaded on a database for analysis.


Author(s):  
Ji Min Baek ◽  
Kyeong Ha Lee ◽  
Seung Ho Lee ◽  
Ja Choon Koo

Abstract One of the common rotating machines of the consumer electronics might be a washing machine. The rotating machinery normally suffers mechanical failures even during daily operations that results in poor performance or shortening lifetime of the machine. Therefore, engineers have been interested in the earliest fault diagnosis of the rotating machine. Existing fault diagnosis methods for rotating machines have used fast fourier transform (FFT) method in frequency domain to detect abnormal frequency. However, it is difficult to diagnose using the FFT method if the normal frequency components of the rotating machines overlaps with the fault frequencies. In this paper, sets of acoustic signals generated by the washing machines are collected by using a smart phone in which an inexpensive microphone is equipped, and collected data are analyzed using a new algorithm, which combining the skewness, kurtosis, A-weighting filter, high-pass filter (HPF), and FFT. The analyzed data is applied to support vector machine (SVM) to determine defect existence. The proposed algorithm solves the disadvantages of the existing method and is accurate enough to discriminate the data collected by the cheap microphone of the smart phone.


2019 ◽  
Vol 13 (1) ◽  
pp. 188-198 ◽  
Author(s):  
Nader Karballaeezadeh ◽  
Danial Mohammadzadeh S ◽  
Shahaboddin Shamshirband ◽  
Pouria Hajikhodaverdikhan ◽  
Amir Mosavi ◽  
...  

2007 ◽  
Vol 3 ◽  
pp. 117693510700300 ◽  
Author(s):  
Changyu Shen ◽  
Timothy E Breen ◽  
Lacey E Dobrolecki ◽  
C. Max Schmidt ◽  
George W. Sledge ◽  
...  

Introduction As an alternative to DNA microarrays, mass spectrometry based analysis of proteomic patterns has shown great potential in cancer diagnosis. The ultimate application of this technique in clinical settings relies on the advancement of the technology itself and the maturity of the computational tools used to analyze the data. A number of computational algorithms constructed on different principles are available for the classification of disease status based on proteomic patterns. Nevertheless, few studies have addressed the difference in the performance of these approaches. In this report, we describe a comparative case study on the classification accuracy of hepatocellular carcinoma based on the serum proteomic pattern generated from a Surface Enhanced Laser Desorption/Ionization (SELDI) mass spectrometer. Methods Nine supervised classification algorithms are implemented in R software and compared for the classification accuracy. Results We found that the support vector machine with radial function is preferable as a tool for classification of hepatocellular carcinoma using features in SELDI mass spectra. Among the rest of the methods, random forest and prediction analysis of microarrays have better performance. A permutation-based technique reveals that the support vector machine with a radial function seems intrinsically superior in learning from the training data since it has a lower prediction error than others when there is essentially no differential signal. On the other hand, the performance of the random forest and prediction analysis of microarrays rely on their capability of capturing the signals with substantial differentiation between groups. Conclusions Our finding is similar to a previous study, where classification methods based on the Matrix Assisted Laser Desorption/Ionization (MALDI) mass spectrometry are compared for the prediction accuracy of ovarian cancer. The support vector machine, random forest and prediction analysis of microarrays provide better prediction accuracy for hepatocellular carcinoma using SELDI proteomic data than six other approaches.


Sign in / Sign up

Export Citation Format

Share Document