US Department of Energy directions in photovoltaic power conditioner development using smart power/power integrated circuit technologies

Author(s):  
A. Bulawka ◽  
S. Krauthamer ◽  
R. Das
Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 617
Author(s):  
Li-Fang Jia ◽  
Lian Zhang ◽  
Jin-Ping Xiao ◽  
Zhe Cheng ◽  
De-Feng Lin ◽  
...  

AlGaN/GaN E/D-mode GaN inverters are successfully fabricated on a 150-mm Si wafer. P-GaN gate technology is applied to be compatible with the commercial E-mode GaN power device technology platform and a systematic study of E/D-mode GaN inverters has been conducted with detail. The key electrical characters have been analyzed from room temperature (RT) to 200 °C. Small variations of the inverters are observed at different temperatures. The logic swing voltage of 2.91 V and 2.89 V are observed at RT and 200 °C at a supply voltage of 3 V. Correspondingly, low/high input noise margins of 0.78 V/1.67 V and 0.68 V/1.72 V are observed at RT and 200 °C. The inverters also demonstrate small rising edge time of the output signal. The results show great potential for GaN smart power integrated circuit (IC) application.


1995 ◽  
Vol 05 (03) ◽  
pp. 455-463 ◽  
Author(s):  
S. FINCO ◽  
F. H. BEHRENS ◽  
J. GUILHERME ◽  
M. I. CASTRO SIMAS ◽  
M. LANÇA

A smart power integrated circuit to be fabricated with standard CMOS technologies was developed in view to obtain a versatile, high performance and low cost basic building block, suitable for a wide range of low power applications. This circuit merges together two transistors, connected in a low-side/high-side switch configuration, with specific control and protection circuitries. These transistors are NMOS medium-voltage lateral structures, which use the lightly doped drain concept and are targeted to handle currents up to 2 A and to support 25 V at OFF state. Experimental results on different applications and topologies show the applicability of the smart switching cell on portable systems power supplies and amplifiers (up to 20 W). Its performance also proves the ability of standard CMOS technologies to implement smart power circuits.


2007 ◽  
Vol 22 (4) ◽  
pp. 1290-1302 ◽  
Author(s):  
Saulo Finco ◽  
Wellington Melo ◽  
Fernando Castaldo ◽  
Jos Pomilio ◽  
Beatriz Vieira Borges ◽  
...  

Author(s):  
Antonio De Vita ◽  
Gian Domenico Licciardo ◽  
Aldo Femia ◽  
Luigi Di Benedetto ◽  
Alfredo Rubino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document