Seed traits determine species' responses to fire under varying soil heating scenarios

2020 ◽  
Vol 34 (9) ◽  
pp. 1967-1978 ◽  
Author(s):  
Ryan Tangney ◽  
David J. Merritt ◽  
J. Nikolaus Callow ◽  
Joseph B. Fontaine ◽  
Ben P. Miller
2013 ◽  
Vol 36 (8) ◽  
pp. 802-811
Author(s):  
Hui-Liang LIU ◽  
Yong-Kuan ZHANG ◽  
Dao-Yuan ZHANG ◽  
Lin-Ke YIN ◽  
Yuan-Ming ZHANG

Crop Science ◽  
2003 ◽  
Vol 43 (2) ◽  
pp. 571 ◽  
Author(s):  
S. K. Stombaugh ◽  
J. H. Orf ◽  
H. G. Jung ◽  
D. A. Somers

2011 ◽  
Vol 39 (No. 3) ◽  
pp. 73-83 ◽  
Author(s):  
O. Horňáková ◽  
M. Závodná ◽  
M. Žáková ◽  
J. Kraic ◽  
F. Debre

The study of diversity in common bean was based on morphological and agronomical characteristics, differentiation of collected accessions by morphological and molecular markers, detection of genetic variation, and duplicates detection in bean landraces. The analysed 82 accessions of common bean (Phaseolus vulgaris L.) were collected in the Western andEastern Carpatien as landrace mixtures. Their seeds were segregated and pooled according to their characteristics; they were further multiplicated, and introduced into the collection. An extensive variation in plant and seed traits was discovered in thirty-three morphological and agronomical characteristics. Nevertheless, some of the accessions were identical in these characteristics. Cluster analysis grouped genotypes into two main branches, reflecting the growth type, seed size parameters, and thousand-seed weight. Molecular differentiation studies were performed by multilocus polymorphism detection in microsatellite and minisatellite DNA regions. Cluster analysis based on molecular data also grouped genotypes but no linkage to morphological traits was revealed. Bean accessions with very similar or identical morphological characters were clearly distinguished by DNA banding patterns. The presence of duplicates was excluded.  


Author(s):  
Jemima Connell ◽  
Mark A. Hall ◽  
Dale G. Nimmo ◽  
Simon J. Watson ◽  
Michael F. Clarke

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhijuan Chen ◽  
Vanessa Lancon-Verdier ◽  
Christine Le Signor ◽  
Yi-Min She ◽  
Yun Kang ◽  
...  

AbstractGrain legumes are highly valuable plant species, as they produce seeds with high protein content. Increasing seed protein production and improving seed nutritional quality represent an agronomical challenge in order to promote plant protein consumption of a growing population. In this study, we used the genetic diversity, naturally present in Medicago truncatula, a model plant for legumes, to identify genes/loci regulating seed traits. Indeed, using sequencing data of 162 accessions from the Medicago HAPMAP collection, we performed genome-wide association study for 32 seed traits related to seed size and seed composition such as seed protein content/concentration, sulfur content/concentration. Using different GWAS and postGWAS methods, we identified 79 quantitative trait nucleotides (QTNs) as regulating seed size, 41 QTNs for seed composition related to nitrogen (i.e. storage protein) and sulfur (i.e. sulfur-containing amino acid) concentrations/contents. Furthermore, a strong positive correlation between seed size and protein content was revealed within the selected Medicago HAPMAP collection. In addition, several QTNs showed highly significant associations in different seed phenotypes for further functional validation studies, including one near an RNA-Binding Domain protein, which represents a valuable candidate as central regulator determining both seed size and composition. Finally, our findings in M. truncatula represent valuable resources to be exploitable in many legume crop species such as pea, common bean, and soybean due to its high synteny, which enable rapid transfer of these results into breeding programs and eventually help the improvement of legume grain production.


Sign in / Sign up

Export Citation Format

Share Document