Germination and emergence of Astrodaucus orientalis (L.) Drude populations influenced by environmental factors and seed burial depth

2021 ◽  
Vol 36 (2) ◽  
pp. 338-347
Author(s):  
Rouhollah Amini ◽  
Atefeh Ebrahimi ◽  
Adel Dabbagh Mohammadi Nasab
Weed Science ◽  
2011 ◽  
Vol 59 (4) ◽  
pp. 495-499 ◽  
Author(s):  
Jihyun Lee ◽  
Bhagirath S. Chauhan ◽  
David E. Johnson

Horse purslane, a C4 species, is a branched, prostrate, and annual weed of upland field crops throughout the tropics. Experiments were conducted to determine the influence of various environmental factors on seed germination and seedling emergence of two populations of horse purslane. Seeds were collected from rice fields of the International Rice Research Institute (the IR population) and from sorghum fields of the University of the Philippines (the UP population); the two sites were 5 km apart in Los Baños, Philippines. Germination response of both populations was greater at 30/20 C and35/25 C day/night temperatures than they were at 25/15 C alternating day/night temperatures. Germination of both populations was greater in the light/dark regime than in darkness. In dark, depending on the temperature, seed germination of the UP population ranged from 37 to 62%, whereas seed germination of the IR population was < 20%. Exposure to 5 min at 117 and 119 C for the IR and UP populations, respectively, reduced germination to 50% of maximum germination. Osmotic potential of −0.26 MPa inhibited germination to 50% of the maximum for the UP population, whereas the corresponding value for the IR population was −0.37 MPa. Seeds placed on or near the soil surface had maximum emergence, and emergence declined with increase in seed burial depth. Seedling emergence of the UP and IR populations was 74% and 13%, respectively, for seeds placed on the soil surface. For both populations, no seedlings emerged from a soil burial depth of 6 cm or more. Germination and emergence responses to light and seed burial depth differed between the two populations of horse purslane. Residues on the soil surface of up to 6 Mg ha−1 did not influence seedling emergence of either populations. Knowledge gained in this study could contribute to developing components of integrated weed management strategies for horse purslane.


Weed Science ◽  
2020 ◽  
pp. 1-29
Author(s):  
Yonghuan Yue ◽  
Guili Jin ◽  
Weihua Lu ◽  
Ke Gong ◽  
Wanqiang Han ◽  
...  

Abstract Drunken horse grass [Achnatherum inebrians (Hance) Keng] is a perennial poisonous weed in western China. A comprehensive understanding of the ecological response of A. inebrians germination to environmental factors would facilitate the formulation of better management strategies for this weed. Experiments were conducted under laboratory conditions to assess the effects of various abiotic factors, including temperature, light, water, pH and burial depth, on the seed germination and seedling emergence of A. inebrians. The seeds germinated at constant temperatures of 15, 20, 25, 30, 35°C and in alternating-temperature regimes of 15/5, 20/10, 25/15, 30/20, 35/25, 40/30°C, and the seed germination percentages under constant and alternating temperatures ranged from 51% to 94% and 15% to 93%, respectively. Maximum germination occurred at a constant temperature of 25°C, and germination was prevented at 45/35°C. Light did not appear to affect seed germination. The germination percentage of seeds was more than 75% in the pH range of 5 to 10, with the highest germination percentage at pH 6. The seeds germinated at osmotic potentials of 0 MPa to -1.0 MPa, but decreasing osmotic potential inhibited germination, with no germination at -1.2MPa. After 21 d of low osmotic stress, the seeds that did not germinate after rehydration had not lost their vitality. The seedling emergence percentage was highest (90%) when seeds were buried at 1 cm but declined with increasing burial depth and no emergence at 9 cm. Deep tillage may be effective in limiting the seed germination and emergence of this species. The results of this study provide useful information on the conditions necessary for A. inebrians germination and provide a theoretical basis for science-based prediction, prevention and control of this species.


2016 ◽  
Vol 283 (1844) ◽  
pp. 20161634 ◽  
Author(s):  
Hannah M. Griffiths ◽  
Richard D. Bardgett ◽  
Julio Louzada ◽  
Jos Barlow

Anthropogenic activities are causing species extinctions, raising concerns about the consequences of changing biological communities for ecosystem functioning. To address this, we investigated how dung beetle communities influence seed burial and seedling recruitment in the Brazilian Amazon. First, we conducted a burial and retrieval experiment using seed mimics. We found that dung beetle biomass had a stronger positive effect on the burial of large than small beads, suggesting that anthropogenic reductions in large-bodied beetles will have the greatest effect on the secondary dispersal of large-seeded plant species. Second, we established mesocosm experiments in which dung beetle communities buried Myrciaria dubia seeds to examine plant emergence and survival. Contrary to expectations, we found that beetle diversity and biomass negatively influenced seedling emergence, but positively affected the survival of seedlings that emerged. Finally, we conducted germination trials to establish the optimum burial depth of experimental seeds, revealing a negative relationship between burial depth and seedling emergence success. Our results provide novel evidence that seed burial by dung beetles may be detrimental for the emergence of some seed species. However, we also detected positive impacts of beetle activity on seedling recruitment, which are probably because of their influence on soil properties. Overall, this study provides new evidence that anthropogenic impacts on dung beetle communities could influence the structure of tropical forests; in particular, their capacity to regenerate and continue to provide valuable functions and services.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
RC. XIONG ◽  
Y. MA ◽  
HW. WU ◽  
WL. JIANG ◽  
XY. MA

ABSTRACT: Velvetleaf, an annual broadleaf weed, is a common and troublesome weed of cropping systems worldwide. Laboratory and field experiments were conducted to determine the effects of environmental factors on germination and emergence of velvetleaf. Seeds germinated over a range of constant temperatures from 10 to 40 oC regardless of light conditions, but no germination occurred at temperature below 5 oC and beyond 50 oC. Seeds germinated at alternating temperature regimes of 15/5 to 40/30 oC, with maximum germination (>90%) at alternating temperatures of 40/30 oC. Germination was sensitive to water stress, and only 0.4% of the seeds germinated at the osmotic potential of -0.4 MPa. There was no germination at ? 0.6 MPa. Moreover, germination was reduced by saline and alkaline stresses and no germination occurred at ³ 150 mM NaCl or ³ 200 mM NaHCO3 concentrations. However, pH values from 5 to 9 had no effect on seed germination. Seedling emergence was significantly affected by burial depth and maximum emergence (78.1-85.6%) occurred at the 1-4 cm depth. The results of this study have contributed to our understanding of the germination and emergence of velvetleaf and should enhance our ability to improve control strategies in cropping systems in central China.


Weed Science ◽  
1990 ◽  
Vol 38 (6) ◽  
pp. 518-521 ◽  
Author(s):  
Robert E. Blackshaw

A study was conducted under controlled environmental conditions to determine the effect of soil temperature, soil moisture, and depth of seed burial on the emergence of round-leaved mallow. Emergence occurred from 5 to 30 C but was optimal at 15 to 20 C. Soil moisture had a greater effect than soil temperature on percentage emergence. Emergence progressively declined below a soil water content of −0.28 MPa, with less than 20% emergence attained at −1.03 to −1.53 MPa. In contrast, rate of emergence of round-leaved mallow was affected more by soil temperature than by moisture. A decrease in temperature from 30 to 5 C increased the time to reach 50% emergence by 10 to 12 days over the moisture regime of this study. Emergence was greatest at depths of 0.5 to 2 cm. No emergence occurred at 8 cm or below. The potential of using the findings of this study to develop cultural control strategies for round-leaved mallow is discussed.


1970 ◽  
Vol 27 (1) ◽  
pp. 196-201 ◽  
Author(s):  
L. M. Dill ◽  
T. G. Northcote

In an experiment in incubation channels at Robertson Creek, B.C., survival of chum salmon from planting of eggs to emergence of fry was higher in large gravel (2–4 inches, 5.1–10.2 cm) than in small gravel (0.4–1.5 inches, 1.0–3.8 cm). Neither condition coefficient nor timing of emergence was affected by gravel size. There were no significant effects of egg burial depth (8 and 12 inches, 20.3 and 30.5 cm) or density (50 and 100 per treatment) on condition coefficient, or timing of emergence.


Weed Science ◽  
2005 ◽  
Vol 53 (4) ◽  
pp. 471-478 ◽  
Author(s):  
Jianying Shen ◽  
Mingquan Shen ◽  
Xiuhong Wang ◽  
Yitong Lu

Laboratory and greenhouse studies were conducted to determine the effect of temperature, soil moisture, light, planting depth, and rhizome water content on shoot emergence and vegetative growth of alligatorweed. Optimum shoot emergence and growth occurred at constant 30 C, and no shoot emergence was found below constant 5 C. A maximum shoot emergence of 93% occurred at constant soil moisture of 30% with temperatures of 10 to 35 C. Shoot emergence and growth decreased as rhizome water content decreased, and shoot emergence did not occur below a rhizome water content of 20%. Shoot emergence and growth decreased with burial depth; shoot emergence was above 90% when rhizomes were buried 0.5 to 1.0 cm deep compared to 16% when they were buried 18 cm deep. Alligatorweed shoot emergence and vegetative growth were not significantly affected by light. In the fields, shoot emergence began in late March and culminated in May and June. These data help explain why this species is most commonly found in crop fields, orchards, roadsides, rivers, lakes, ponds, and irrigation canals. This information may aid in the development of more effective management measures, such as bringing alligatorweed rhizomes to the surface or below 20 cm deep to restrain its emergence and growth at winter or summer plowing.


2015 ◽  
Vol 72 (6) ◽  
pp. 489-494 ◽  
Author(s):  
Bianca Assis Barbosa Martins ◽  
Pedro Jacob Christoffoleti

2013 ◽  
Vol 49 (No. 4) ◽  
pp. 193-197 ◽  
Author(s):  
Z. Martinková ◽  
A. Honěk

Seeds of weeds buried by tillage may germinate at depths from which seedlings cannot establish. In barnyardgrass (Echinochloa crus-galli) we investigated how fatal germination was influenced by the depth and time of seed burial. The proportion of germinated seeds decreased with burial depth to 0&ndash;20% at &ge; 0.1 m depth which is fatal for seedling establishment. The percentage of fatal germination was greater for the seeds buried during the spring season than during autumn. Germination was influenced by seed pre-treatment, after ripening or stratification. Spring ploughing of non-dormant seeds below 0.1 m depth induces fatal germination, decreasing in this way seed bank of barnyardgrass.


Sign in / Sign up

Export Citation Format

Share Document