Effects of mono‐ and diglycerides of fatty acids on the milk fat globule membrane after heat treatment

2020 ◽  
Vol 73 (4) ◽  
pp. 667-673
Author(s):  
Dima Atehli ◽  
Jianming Wang ◽  
Jinghua Yu ◽  
Fatma Ali ◽  
Yi Wang
2002 ◽  
Vol 69 (4) ◽  
pp. 555-567 ◽  
Author(s):  
SUNG JE LEE ◽  
JOHN W. SHERBON

The effects of heat treatment and homogenization of whole milk on chemical changes in the milk fat globule membrane (MFGM) were investigated. Heating at 80 °C for 3–18 min caused an incorporation of whey proteins, especially β-lactoglobulin (β-lg), into MFGM, thus increasing the protein content of the membrane and decreasing the lipid. SDS-PAGE showed that membrane glycoproteins, such as PAS-6 and PAS-7, had disappeared or were weakly stained in the gel due to heating of the milk. Heating also decreased free sulphydryl (SH) groups in the MFGM and increased disulphide (SS) groups, suggesting that incorporation of β-lg might be due to association with membrane proteins via disulphide bonds. In contrast, homogenization caused an adsorption of caseins to the MFGM but no binding of whey proteins to the MFGM without heating. Binding of caseins and whey proteins and loss of membrane proteins were not significantly different between milk samples that were homogenized before and after heating. Viscosity of whole milk was increased when milk was treated with both homogenization and heating.


1977 ◽  
Vol 44 (3) ◽  
pp. 495-507 ◽  
Author(s):  
J. C. Allen ◽  
Catherine Humphries

SummaryBovine milk-fat globule membrane was solubilized with a zwitterionic surfactant and subjected to chromatography on agarose, with the surfactant in the eluant. Fractions were tested for their effects on the oxidation of buffered linoleate. The maximum oxidative capability was greatly enhanced by the addition of Cu, and became associated with the phospholipids.Further chromatography of the retarded protein peak from agarose on Sephadex G-200, again in the presence of surfactant, gave 2 protein peaks. Oxidative effectiveness resided almost entirely in the first peak, which was devoid of phospholipid, but high in xanthine oxidase activity. This fraction was subjected to isoelectric focusing, and the xanthine oxidase from this was highly pro-oxidative. Furthermore, its oxidative capability was almost doubled on heat treatment.


2010 ◽  
Vol 120 (2) ◽  
pp. 544-551 ◽  
Author(s):  
Olivia Ménard ◽  
Sarfraz Ahmad ◽  
Florence Rousseau ◽  
Valérie Briard-Bion ◽  
Frédéric Gaucheron ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Åke Nilsson ◽  
Rui-Dong Duan ◽  
Lena Ohlsson

Milk polar lipids provide choline, ethanolamine, and polyunsaturated fatty acids, which are needed for the growth and plasticity of the tissues in a suckling child. They may also inhibit cholesterol absorption by interacting with cholesterol during micelle formation. They may also have beneficial luminal, mucosal, and metabolic effects in both the neonate and the adult. The milk fat globule membrane contains large proportions of sphingomyelin (SM), phosphatidylcholine (PC), and phosphatidylethanolamine (PE), and some phosphatidylserine (PS), phosphatidylinositol (PI), and glycosphingolipids. Large-scale technical procedures are available for the enrichment of milk fat globule membrane (MFGM) in milk replacement formulations and food additives. Pancreatic phospholipase A2 (PLA2) and mucosal phospholipase B digest glycero-phospholipids in the adult. In the neonate, where these enzymes may be poorly expressed, pancreatic lipase-related protein 2 probably has a more important role. Mucosal alkaline SM-ase and ceramidase catalyze the digestion of SM in both the neonate and the adult. In the mucosa, the sphingosine is converted into sphingosine-1-phosphate, which is both an intermediate in the conversion to palmitic acid and a signaling molecule. This reaction sequence also generates ethanolamine. Here, we summarize the pathways by which digestion and absorption may be linked to the biological effects of milk polar lipids. In addition to the inhibition of cholesterol absorption and the generation of lipid signals in the gut, the utilization of absorbed choline and ethanolamine for mucosal and hepatic phospholipid synthesis and the acylation of absorbed lyso-PC with polyunsaturated fatty acids to chylomicron and mucosal phospholipids are important.


Dairy ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 202-217
Author(s):  
Michele Manoni ◽  
Donata Cattaneo ◽  
Sharon Mazzoleni ◽  
Carlotta Giromini ◽  
Antonella Baldi ◽  
...  

Milk lipids are composed of milk fat globules (MFGs) surrounded by the milk fat globule membrane (MFGM). MFGM protects MFGs from coalescence and enzymatic degradation. The milk lipid fraction is a “natural solvent” for macronutrients such as phospholipids, proteins and cholesterol, and micronutrients such as minerals and vitamins. The research focused largely on the polar lipids of MFGM, given their wide bioactive properties. In this review we discussed (i) the composition of MFGM proteome and its variations among species and phases of lactation and (ii) the micronutrient content of human and cow’s milk lipid fraction. The major MFGM proteins are shared among species, but the molecular function and protein expression of MFGM proteins vary among species and phases of lactation. The main minerals in the milk lipid fraction are iron, zinc, copper and calcium, whereas the major vitamins are vitamin A, β-carotene, riboflavin and α-tocopherol. The update and the combination of this knowledge could lead to the exploitation of the MFGM proteome and the milk lipid fraction at nutritional, biological or technological levels. An example is the design of innovative and value-added products, such as MFGM-supplemented infant formulas.


Sign in / Sign up

Export Citation Format

Share Document