Postmortem Diagnosis of Fatal Hypothermia by Fourier Transform Infrared Spectroscopic Analysis of Edema Fluid in Formalin‐Fixed, Paraffin‐Embedded Lung Tissues

2019 ◽  
Vol 65 (3) ◽  
pp. 846-854
Author(s):  
Hancheng Lin ◽  
Xiangshen Guo ◽  
Yiwen Luo ◽  
Yijiu Chen ◽  
Rui Zhao ◽  
...  
Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 115 ◽  
Author(s):  
Kar-Yan Su ◽  
Wai-Leng Lee

Infrared spectroscopy has long been used to characterize chemical compounds, but the applicability of this technique to the analysis of biological materials containing highly complex chemical components is arguable. However, recent advances in the development of infrared spectroscopy have significantly enhanced the capacity of this technique in analyzing various types of biological specimens. Consequently, there is an increased number of studies investigating the application of infrared spectroscopy in screening and diagnosis of various diseases. The lack of highly sensitive and specific methods for early detection of cancer has warranted the search for novel approaches. Being more simple, rapid, accurate, inexpensive, non-destructive and suitable for automation compared to existing screening, diagnosis, management and monitoring methods, Fourier transform infrared spectroscopy can potentially improve clinical decision-making and patient outcomes by detecting biochemical changes in cancer patients at the molecular level. Besides the commonly analyzed blood and tissue samples, extracellular vesicle-based method has been gaining popularity as a non-invasive approach. Therefore, infrared spectroscopic analysis of extracellular vesicles could be a useful technique in the future for biomedical applications. In this review, we discuss the potential clinical applications of Fourier transform infrared spectroscopic analysis using various types of biological materials for cancer. Additionally, the rationale and advantages of using extracellular vesicles in the spectroscopic analysis for cancer diagnostics are discussed. Furthermore, we highlight the challenges and future directions of clinical translation of the technique for cancer.


2020 ◽  
Vol 57 (6) ◽  
pp. 812-820 ◽  
Author(s):  
Kirsten Hülskötter ◽  
Vanessa M. Pfankuche ◽  
Lydia van Dyck ◽  
Martin Höltershinken ◽  
Andrea Springer ◽  
...  

Bovine babesiosis, caused by Babesia divergens, is in general a rare disease in Europe. Nonetheless, local outbreaks can cause severe economic damage, and postmortem identification represents a diagnostic challenge. During a recent outbreak in May 2018 in northern Germany, 21 animals of a herd of 150 cattle died within 40 days having had clinical signs of fever and hemoglobinuria. Gross examination of 4 of the 21 deceased animals revealed a tick infestation, jaundice, and dark brown staining of urine and kidneys. Histologically, there were iron-positive deposits, hyperplasia of the red pulp of the spleen, and centrilobular necrosis of hepatocytes. In several locations, small basophilic granules suggestive of intraerythrocytic parasites were visible in hematoxylin-eosin- and Giemsa-stained sections. Peripheral blood smears from a living cow from the herd and polymerase chain reaction (PCR) of feeding ticks revealed B. divergens infection. In situ hybridization (ISH) was applied on formalin-fixed, paraffin-embedded (FFPE) tissue of the necropsied cattle to confirm babesiosis in these animals postmortem. Digoxigenin-labeled DNA probes were generated based on a specific nucleotide sequence for B. divergens, obtained by PCR and sequencing of DNA isolates from infected Ixodes ricinus ticks from deceased cattle. ISH using these probes allowed postmortem diagnosis of B. divergens infection in routinely fixed FFPE tissues.


Sign in / Sign up

Export Citation Format

Share Document