Salvianolic Acid B Inhibits High-Fat Diet-Induced Inflammation by Activating the Nrf2 Pathway

2017 ◽  
Vol 82 (8) ◽  
pp. 1953-1960 ◽  
Author(s):  
Bin Wang ◽  
Jin Sun ◽  
Yonghui Shi ◽  
Guowei Le
2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaoyi Mai ◽  
Xin Yin ◽  
Peipei Chen ◽  
Minzhou Zhang

Background/Aims: Obesity-related kidney disease is associated with elevated levels of saturated free fatty acids (SFA). SFA lipotoxicity in tubular cells contributes to significant cellular apoptosis and injury. Salvianolic acid B (SalB) is the most abundant bioactive molecule from Radix Salviae Miltiorrhizae. In this study, we investigated the effect of SalB on SFA-induced renal tubular injury and endoplasmic reticulum (ER) stress, in vivo and in vitro.Methods: C57BL/6 mice were assigned to five groups: a control group with normal diet (Nor), high-fat diet group (HFD), and HFD with three different SalB treatment doses, low (SalBL; 3 mg/kg), medium (SalBM; 6.25 mg/kg), and high (SalBH; 12.5 mg/kg) doses. SalB was intraperitoneally injected daily for 4 weeks after 8 weeks of HFD. After 12 weeks, mice were sacrificed and kidneys and sera were collected. Apoptosis and ER stress were induced in human proximal tubule epitelial (HK2) cells by palmitic acid (PA, 0.6 mM), tunicamycin (TM, 1 μg/ml), or thapsigargin (TG, 200 nM) in vitro.Results: C57BL/6 mice fed a high-fat diet (HFD) for 12 weeks exhibited increased apoptosis (Bax and cleaved caspase-3) and ER stress (BIP, P-eIF2α, ATF4, CHOP, ATF6, IRE1α, and XBP1s) markers expression in the kidney, compared with control mice, which were remarkably suppressed by SalB treatment. In vitro studies showed that PA (0.6 mM) induced apoptosis and ER stress in cultured HK2 cells. SalB treatment attenuated all the adverse effects of PA. However, SalB failed to inhibit TM or TG-induced ER stress in HK2 cells.Conclusion: The study indicated that SalB may play an important role in obesity-related kidney injury via mediating SFA-induced ER stress.


2015 ◽  
Vol 53 (7) ◽  
pp. 1058-1065 ◽  
Author(s):  
Mingqing Huang ◽  
Peijian Wang ◽  
Shuyu Xu ◽  
Wen Xu ◽  
Wei Xu ◽  
...  

2014 ◽  
Vol 34 (2) ◽  
pp. 288-298 ◽  
Author(s):  
Peijian Wang ◽  
Shuyu Xu ◽  
Wenzhang Li ◽  
Fang Wang ◽  
Zhen Yang ◽  
...  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6506 ◽  
Author(s):  
Tian An ◽  
Jing Zhang ◽  
Bohan Lv ◽  
Yufei Liu ◽  
Jiangpinghao Huang ◽  
...  

Background Adipose tissue plays a central role in obesity-related metabolic diseases such as type 2 diabetes. Salvianolic acid B (Sal B), a water-soluble ingredient derived from Salvia miltiorrhiza, has been shown to reduce obesity and obesity-related metabolic diseases by suppressing adipogenesis. However, the role of Sal B in white adipose tissue (WAT) is not yet clear. Methods Illumina Hiseq 4000 was used to study the effects of Sal B on the expression of long non-coding RNA (lncRNA) and circular RNA (circRNA) in epididymal white adipose tissue induced by a high fat diet in obese mice. Results RNA-Seq data showed that 234 lncRNAs, 19 circRNAs, and 132 mRNAs were differentially expressed in WAT under Sal B treatment. The up-regulated protein-coding genes in WAT of the Sal B-treated group were involved in the insulin resistance pathway, while the down-regulated genes mainly participated in the IL-17 signaling pathway. Other pathways may play an important role in the formation and differentiation of adipose tissue, such as B cell receptor signaling. Analysis of the lncRNA–mRNA network provides potential targets for lncRNAs in energy metabolism. We speculate that Sal B may serve as a potential therapeutic approach for obesity.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jinghui Zhai ◽  
Lina Tao ◽  
Yueming Zhang ◽  
Huan Gao ◽  
Xiaoyu Qu ◽  
...  

High glucose and high fat are important inducements for the development and progression of diabetic cardiopathy. Salvianolic acid B (SAB), which is the most abundant and bioactive compound in Danshen, attenuates oxidative stress-related disorders, such as cardiovascular diseases, cerebral ischemia, and diabetes. However, the effect of SAB on diabetic cardiopathy is not clear. The aim of study was to investigate the effect and the underlying molecular mechanisms of SAB on diabetic cardiopathy in vitro model. The human umbilical vein endothelial (HUVEC) cells were treated with high glucose (HG, 30 mM) or high fat (palmitic acid, PA, 0.75 mM) in the presence or absence of SAB (100, 200, and 400 mg/L) and incubated for 24 h. We found that HG or PA induced apoptosis of HUVEC cells, while treatment with SAB inhibited the apoptosis. We also found that SAB reversed HG- or PA-induced oxidative stress, apoptosis cell cytokines production, and expression of thioredoxin-interacting protein (TXNIP). Moreover, SAB increased HG- or PA-induced expression of Sirtuin 1 (Sirt1), a nicotinamide adenine dinucleotide- (NAD+-) dependent histone deacetylase. Exposure of HUVEC cells to Ex527 (Sirt1 inhibitor) suppressed the effect of SAB on acetyl-p53 and procaspase-3 expressions. In conclusion, the results suggested that SAB could attenuate HUVEC cells damage treated with HG or PA via Sirt1 and might be a potential therapy agent for the diabetic cardiopathy treatment.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Liu Tongqiang ◽  
Liu Shaopeng ◽  
Yu Xiaofang ◽  
Song Nana ◽  
Xu Xialian ◽  
...  

Contrast-induced acute renal injury (CI-AKI) has become a common cause of hospital-acquired renal failure. However, the development of prophylaxis strategies and approved therapies for CI-AKI is limited. Salvianolic acid B (SB) can treat cardiovascular-related diseases. The aim of the present study was to assess the effect of SB on prevention of CI-AKI and explore its underlying mechanisms. We examined its effectiveness of preventing renal injury in a novel CI-AKI rat model. Compared with saline, intravenous SB pretreatment significantly attenuated elevations in serum creatinine and the histological changes of renal tubular injuries, reduced the number of apoptosis-positive tubular cells, activated Nrf2, and lowered the levels of renal oxidative stress induced by iodinated contrast media. The above renoprotection of SB was abolished by the PI3K inhibitor (wortmannin). In HK-2 cells, SB activated Nrf2 and decreased the levels of oxidative stress induced by hydrogen peroxide and subsequently improved cell viability. The above cytoprotection of SB was blocked by the PI3K inhibitor (wortmannin) or siNrf2. Thus, our results demonstrate that, due to its antioxidant properties, SB has the potential to effectively prevent CI-AKI via the PI3K/Akt/Nrf2 pathway.


2016 ◽  
Vol 591 ◽  
pp. 57-65 ◽  
Author(s):  
Stephen L. Slocum ◽  
John J. Skoko ◽  
Nobunao Wakabayashi ◽  
Susan Aja ◽  
Masayuki Yamamoto ◽  
...  

2017 ◽  
Vol 799 ◽  
pp. 201-210 ◽  
Author(s):  
Zheng Wang ◽  
Sun-O Ka ◽  
Youngyi Lee ◽  
Byung-Hyun Park ◽  
Eun Ju Bae
Keyword(s):  
P38 Mapk ◽  
High Fat ◽  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jianfei Lai ◽  
Qianyu Qian ◽  
Qinchao Ding ◽  
Li Zhou ◽  
Ai Fu ◽  
...  

Background: Salvianolic acid A (Sal A), a natural polyphenolic compound extracted from Radix Salvia miltiorrhiza (Danshen), exhibits exceptional pharmacological activities against cardiovascular diseases. While a few studies have reported anti-obesity properties of Sal A, the underlying mechanisms are largely unknown. Given the prevalence of obesity and promising potential of browning of white adipose tissue to combat obesity, recent research has focused on herbal ingredients that may promote browning and increase energy expenditure.Purpose: The present study was designed to investigate the protective antiobesity mechanisms of Sal A, in part through white adipose browning.Methods: Both high-fat diet (HFD)-induced obese (DIO) male mice model and fully differentiated C3H10T1/2 adipocytes from mouse embryo fibroblasts were employed in this study. Sal A (20 and 40 mg/kg) was administrated to DIO mice by intraperitoneal injection for 13-weeks. Molecular mechanisms mediating effects of Sal A were evaluated.Resluts: Sal A treatment significantly attenuated HFD-induced weight gain and lipid accumulation in epididymal fat pad. Uncoupling protein 1 (UCP-1), a specialized thermogenic protein and marker for white adipocyte browning, was significantly induced by Sal A treatment in both white adipose tissues and cultured adipocytes. Further mechanistic investigations revealed that Sal A robustly reversed HFD-decreased AMP-activated protein kinase (AMPK) phosphorylation and sirtuin 1 (SIRT1) expression in mice. Genetically silencing either AMPK or SIRT1 using siRNA abolished UCP-1 upregulation by Sal A. AMPK silencing significantly blocked Sal A-increased SIRT1 expression, while SIRT1 silencing did not affect Sal A-upregulated phosphorylated-AMPK. These findings indicate that AMPK was involved in Sal A-increased SIRT1.Conclusion: Sal A increases white adipose tissue browning in HFD-fed male mice and in cultured adipocytes. Thus, Sal is a potential natural therapeutic compound for treating and/or preventing obesity.


Sign in / Sign up

Export Citation Format

Share Document