Eucalyptus citriodora leaf extract‐mediated biosynthesis of silver nanoparticles: broad antimicrobial spectrum and mechanisms of action against hospital‐acquired pathogens

Apmis ◽  
2019 ◽  
Vol 127 (12) ◽  
pp. 764-778 ◽  
Author(s):  
Supakit Paosen ◽  
Sarunporn Jindapol ◽  
Rosesathorn Soontarach ◽  
Supayang Piyawan Voravuthikunchai
Author(s):  
Supakit Paosen ◽  
Sakkarin Lethongkam ◽  
Suttiwan Wunnoo ◽  
Nussana Lehman ◽  
Ekwipoo Kalkornsurapranee ◽  
...  

Failure in the prevention of cross-transmission from contaminated gloves has been recognized as an important factor that contributes to the spread of several healthcare-associated infections. Ex situ coating process with silver nanoparticles (AgNPs) using Eucalyptus citriodora ethanolic leaf extract as reducing and capping agents to coat glove surfaces has been developed to prevent this mode of transmission. Elemental analysis of coated gloves showed 24.8 Wt% silver densely adhere on the glove surface. The coated gloves fully eradicated important hospital-acquired pathogens including Gram-positive bacteria, Gram-negative bacteria, and yeasts within 1 h. The coated gloves showed significant reduction, an average of 5 logs when tested against all standard strains and most clinical isolates (p < 0.01). Following prolonged exposure, the coating significantly reduced the numbers of most adhered pathogenic species, compared with uncoated gloves (p < 0.0001), which was observed by fluorescence microscopy. Scanning electron microscopy further confirmed that AgNPs coated-gloves reduced microbial adhesion of mixed-species biofilms, compared with uncoated gloves. A series of contamination and transmission assays demonstrated no transmission of viable organisms. Biocompatibility analysis confirmed high cell viability of HaCaT and L929 cells at all concentrations of AgNPs tested. The coated gloves were non-toxic with direct contact with L929 cells.


Author(s):  
M. Linga Rao ◽  
Bhumi G ◽  
Savithramma N

Silver nanoparticles (SNPs) exhibit tremendous applications in medicine as antimicrobial agent.  The use of different parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals.  In the present study, we report a rapid biosynthesis of silver nanoparticles from aqueous leaf extract of medicinal plant Allamanda cathartica.  The active phytochemicals present in the plant were responsible for the quick reduction of silver ion to metallic silver nanoparticles. The reduced silver nanoparticles were characterized by using UV-Vis spectrophotometry, Scanning Electron Microscope (SEM), Energy Dispersive Analysis of X-ray (EDAX) and Atomic Force Microscopy (AFM).  The spherical shaped silver nanoparticles were observed and it was found to 19-40 nm range of size.  These phytosynthesized SNPs were tested for their antimicrobial activity and it analyzed by measuring the inhibitory zone. A. cathartica aqueous leaf extract of SNPs showed highest toxicity to Pseudomonas followed by Klebsiella, Bacillus and E. coli and lowest toxicity towards Proteus. In fungal species, highest inhibition zone was noted against Rhizopus followed by Curvularia, Aspergillus flavus and Aspergillus niger and minimum inhibition zone was observed against Fusarium species.  These results suggest a promising potential of Indian plant-based green chemistry for production of SNPs for biomedical and nanotechnology applications.


Author(s):  
K.K. Gupta ◽  
Neha Kumari ◽  
Neha Sinha ◽  
Akruti Gupta

Biogenic synthesis of silver nanoparticles synthesized from Hymenocallis species (Spider Lilly) leaf extract was subjected for investigation of its antimicrobial property against four bacterial species (E. coli, Salmonella sp., Streptococcus sp. & Staphylococcus sp.). The results revealed that synthesized nanoparticles solution very much justify the color change property from initial light yellow to final reddish brown during the synthesis producing a characteristics absorption peak in the range of 434-466 nm. As antimicrobial agents, their efficacy was evaluated by analysis of variance in between the species and among the different concentration of AgNPs solution, which clearly showed that there was significant variation in the antibiotic property between the four different concentrations of AgNPs solution and also among four different species of bacteria taken under studies. However, silver nanoparticles solution of 1: 9 and 1:4 were proved comparatively more efficient as antimicrobial agents against four species of bacteria.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 299
Author(s):  
Reetika Singh ◽  
Christophe Hano ◽  
Gopal Nath ◽  
Bechan Sharma

Carissa carandas L. is traditionally used as antibacterial medicine and accumulates many antioxidant phytochemicals. Here, we expand this traditional usage with the green biosynthesis of silver nanoparticles (AgNPs) achieved using a Carissa carandas L. leaf extract as a reducing and capping agent. The green synthesis of AgNPs reaction was carried out using 1mM silver nitrate and leaf extract. The effect of temperature on the synthesis of AgNPs was examined using room temperature (25 °C) and 60 °C. The silver nanoparticles were formed in one hour by stirring at room temperature. In this case, a yellowish brown colour was developed. The successful formation of silver nanoparticles was confirmed by UV–Vis, Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) analysis. The characteristic peaks of the UV-vis spectrum and XRD confirmed the synthesis of AgNPs. The biosynthesised AgNPs showed potential antioxidant activity through DPPH assay. These AgNPs also exhibited potential antibacterial activity against human pathogenic bacteria. The results were compared with the antioxidant and antibacterial activities of the plant extract, and clearly suggest that the green biosynthesized AgNPs can constitute an effective antioxidant and antibacterial agent.


Sign in / Sign up

Export Citation Format

Share Document