Efficacy of Silver Nanoparticles Synthesized from Hymenocallis species (Spider Lilly) Leaf Extract as Antimicrobial Agents

Author(s):  
K.K. Gupta ◽  
Neha Kumari ◽  
Neha Sinha ◽  
Akruti Gupta

Biogenic synthesis of silver nanoparticles synthesized from Hymenocallis species (Spider Lilly) leaf extract was subjected for investigation of its antimicrobial property against four bacterial species (E. coli, Salmonella sp., Streptococcus sp. & Staphylococcus sp.). The results revealed that synthesized nanoparticles solution very much justify the color change property from initial light yellow to final reddish brown during the synthesis producing a characteristics absorption peak in the range of 434-466 nm. As antimicrobial agents, their efficacy was evaluated by analysis of variance in between the species and among the different concentration of AgNPs solution, which clearly showed that there was significant variation in the antibiotic property between the four different concentrations of AgNPs solution and also among four different species of bacteria taken under studies. However, silver nanoparticles solution of 1: 9 and 1:4 were proved comparatively more efficient as antimicrobial agents against four species of bacteria.

Author(s):  
Meghashyama Bhat ◽  
Bidhayak Chakraborty ◽  
Raju Suresh Kumar ◽  
Abdulrahman I. Almansour ◽  
Natarajan Arumugam ◽  
...  

2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Marc B. Habash ◽  
Mara C. Goodyear ◽  
Amber J. Park ◽  
Matthew D. Surette ◽  
Emily C. Vis ◽  
...  

ABSTRACT Increasing antibiotic resistance among pathogenic bacterial species is a serious public health problem and has prompted research examining the antibacterial effects of alternative compounds and novel treatment strategies. Compounding this problem is the ability of many pathogenic bacteria to form biofilms during chronic infections. Importantly, these communities are often recalcitrant to antibiotic treatments that show effectiveness against acute infection. The antimicrobial properties of silver have been known for decades, but recently silver and silver-containing compounds have seen renewed interest as antimicrobial agents for treating bacterial infections. The goal of this study was to assess the ability of citrate-capped silver nanoparticles (AgNPs) of various sizes, alone and in combination with the aminoglycoside antibiotic tobramycin, to inhibit established Pseudomonas aeruginosa biofilms. Our results demonstrate that smaller 10-nm and 20-nm AgNPs were more effective at synergistically potentiating the activity of tobramycin. Visualization of biofilms treated with combinations of 10-nm AgNPs and tobramycin reveals that the synergistic bactericidal effect may be caused by disrupting cellular membranes. Minimum biofilm eradication concentration (MBEC) assays using clinical P. aeruginosa isolates shows that small AgNPs are more effective than larger AgNPs at inhibiting biofilms, but that the synergy effect is likely a strain-dependent phenomenon. These data suggest that small AgNPs synergistically potentiate the activity of tobramycin against P. aeruginosa in vitro and may reveal a potential role for AgNP/antibiotic combinations in treating patients with chronic infections in a strain-specific manner.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ain Nadirah Binti Romainor ◽  
Suk Fun Chin ◽  
Suh Cem Pang ◽  
Lesley Maurice Bilung

Cellulose films with antimicrobial property were prepared by incorporation of chitosan nanoparticles as antimicrobial agents into the cellulose films. The antimicrobial property of these chitosan nanoparticles-doped cellulose films againstEscherichia coli(E. coli) was evaluated via diffusion assay method, minimum inhibitory concentration (MIC) method, and minimum bactericidal concentration (MBC) method. The effects of antimicrobial agent amount, size-related property (nanoparticles and bulk chitosan), and crosslinking by citric acid on antimicrobial activity of cellulose films were studied. It was observed that the antimicrobial activity was enhanced when chitosan nanoparticles were used as compared to when bulk chitosan was used. A maximumE. coliinhibition of 85% was achieved with only 5% (v/v) doping of chitosan nanoparticles into the cellulose films. Crosslinking of the cellulose films with citric acid was observed to have resulted in 50% reduction of water absorbency and a slight increase ofE. coliinhibition by 3% for chitosan nanoparticles-doped cellulose films.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 889
Author(s):  
Ann A. Elshamy ◽  
Sarra E. Saleh ◽  
Mohammad Y. Alshahrani ◽  
Khaled M. Aboshanab ◽  
Mohammad M. Aboulwafa ◽  
...  

Gram-negative bacteria are common causes of urinary tract infections (UTIs). Such pathogens can acquire genes encoding multiple mechanisms of antimicrobial resistance, including carbapenem resistance. The aim of this study was to detect the carbapenemase-producing ability of some Gram-negative bacterial isolates from urine specimens of patients suffering from complicated UTIs at two vital tertiary care hospitals in Cairo, Egypt; to determine the prevalence of carbapenemase genes among plasmid-bearing isolates; and explore the possibility of horizontal gene transfer to other bacterial species. The collected isolates were subjected to antimicrobial susceptibility testing, phenotypic analysis of carbapenemase production, and molecular detection of plasmid-borne carbapenemase genes, then the extracted plasmids were transformed into competent E. coli DH5α. A total of 256 Gram-negative bacterial clinical isolates were collected, 65 (25.4%) isolates showed carbapenem resistance of which 36 (55.4%) were carbapenemase-producers, and of these 31 (47.7%) harbored plasmids. The extracted plasmids were used as templates for PCR amplification of blaKPC, blaNDM, blaVIM, blaOXA-48, and blaIMP carbapenemase genes. The blaOXA-48 gene was detected in 24 (77.4%) of the tested isolates while blaVIM gene was detected in 8 (25.8%), both blaKPC and blaNDM genes were co-present in 1 (3.2%) isolate. Plasmids carrying the blaOXA-48 gene from 4 K. pneumoniae clinical isolates were successfully transformed into competent E. coli DH5α. The transformants were carbapenemase-producers and acquired resistance to some of the tested antimicrobial agents as compared to untransformed E. coli DH5α. The study concluded that the rate of carbapenem resistance among Gram-negative bacterial uropathogens in Cairo, Egypt is relatively high and can be transferred horizontally to other bacterial host(s).


Author(s):  
T Peter Amaladhas ◽  
S Sivagami ◽  
T Akkini Devi ◽  
N Ananthi ◽  
S Priya Velammal

Sign in / Sign up

Export Citation Format

Share Document