scholarly journals Influence of corpus luteum and ovarian volume on the number and quality of bovine oocytes

2014 ◽  
Vol 86 (2) ◽  
pp. 148-152 ◽  
Author(s):  
Jurandy Mauro Penitente-Filho ◽  
Carolina Rodrigues Jimenez ◽  
Adriana Moreira Zolini ◽  
Erly Carrascal ◽  
Jovana Luiza Azevedo ◽  
...  
Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 860
Author(s):  
Wu-Sheng Sun ◽  
Hoon Jang ◽  
Mi-Ryung Park ◽  
Keon Bong Oh ◽  
Haesun Lee ◽  
...  

Oxidative stress has been suggested to negatively affect oocyte and embryo quality and developmental competence, resulting in failure to reach full term. In this study, we investigated the effect of N-acetyl-L-cysteine (NAC), a cell-permeating antioxidant, on developmental competence and the quality of oocytes and embryos upon supplementation (0.1–10 mM) in maturation and culture medium in vitro using slaughterhouse-derived oocytes and embryos. The results show that treating oocytes with 1.0 mM NAC for 8 h during in vitro maturation attenuated the intracellular reactive oxygen species (ROS) (p < 0.05) and upregulated intracellular glutathione levels (p < 0.01) in oocytes. Interestingly, we found that NAC affects early embryonic development, not only in a dose-dependent, but also in a stage-specific, manner. Significantly (p < 0.05) decreased cleavage rates (90.25% vs. 81.46%) were observed during the early stage (days 0–2), while significantly (p < 0.05) increased developmental rates (38.20% vs. 44.46%) were observed during the later stage (from day 3) of embryonic development. In particular, NAC supplementation decreased the proportion of apoptotic blastomeres significantly (p < 0.05), resulting in enhanced hatching capability and developmental rates during the in vitro culture of embryos. Taken together, our results suggest that NAC supplementation has beneficial effects on bovine oocytes and embryos through the prevention of apoptosis and the elimination of oxygen free radicals during maturation and culture in vitro.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 327-327
Author(s):  
Ekaterina Shedova ◽  
Galina Singina ◽  
Irina Y Lebedeva ◽  
Aleksandr Lopukhov

Abstract The evaluation of factors responsible for the protection of the oocytes attained the metaphase-II stage from aging is importance for successful in vitro embryo reproduction. The aim of the present research was to study dose-dependent effects of epidermal growth factor (EGF) and prolactin (PRL) on the quality of bovine oocytes after their aging in vitro. Bovine cumulus-enclosed oocytes (CEOs) were matured in vitro for 20 h in TCM 199 containing 0.2 mM sodium pyruvate, 10% fetal calf serum (FCS), 10 μg/ml FSH and LH. At the end of in vitro maturation, oocytes were transferred to TCM 199 supplemented with 10% FCS (aging medium) and cultured for additional 24 h in the absence (Control) and in presence of EGF (10 and 50 ng/ml) and PRL (20 and 50 ng/ml). After prolonged culture oocytes were used for apoptosis detection (TUNEL staining, n=251) and the state of chromosomes evaluation (Tarkowski’s cytogenetic method, n=359). The data from 3–4 replicates were analyzed by ANOVA. At the end of prolonged culture (24 h) the rate of apoptotic oocytes in the Control group was 47.4±8.5%. EGF at concentration of 10 ng/ml and PRL at both doses decreased this rate to 15.0–22.1% (p &lt; 0.05). Furthermore, PRL (not EGF) reduced the frequency of abnormal chromosome modifications (decondensation, adherence, clumping) at concentrations of 20–50 ng/ml from 58.7±2.1% (Control) to 41.2±1.9 and 45.6±2.7% respectively (p &lt; 0.01). Thus, EGF and PRL is able to maintain the apoptosis resistance of bovine oocytes during their prolonged in vitro culture as well as PRL have the decelerating effect on abnormal modifications of M-II chromosomes. The research was supported by RFBR (17-29-08035) and the Ministry of Science and Higher Education of Russia.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jolanta Opiela ◽  
Joanna Romanek ◽  
Daniel Lipiński ◽  
Zdzisław Smorąg

The objective of the present study was to evaluate the effect of hyaluronan (HA) during IVM on meiotic maturation, embryonic development, and the quality of oocytes, granulosa cells (GC), and obtained blastocysts. COCs were maturedin vitroin control medium and medium with additional 0.035% or 0.07% of exogenous HA. The meiotic maturity did not differ between the analysed groups. The best rate and the highest quality of obtained blastocysts were observed when 0.07% HA was used. A highly significant difference (P<0.001) was noted in the mean number of apoptotic nuclei per blastocyst and in the DCI between the 0.07% HA and the control blastocysts (P<0.01). Our results suggest that addition of 0.035% HA and 0.07% HA to oocyte maturation media does not affect oocyte nuclear maturation and DNA fragmentation. However, the addition of 0.07% HA during IVM decreases the level of blastocysts DNA fragmentation. Finally, our results suggest that it may be risky to increase the HA concentration during IVM above 0.07% as we found significantly higherBaxmRNA expression levels in GC cultured with 0.07% HA. The final concentration of HA being supplemented to oocyte maturation media is critical for the success of the IVP procedure.


2007 ◽  
Vol 19 (1) ◽  
pp. 295
Author(s):  
K. Yotsushima ◽  
M. Shimizu ◽  
H. Kon ◽  
Y. Izaike

A simple method to evaluate the quality of in vitro-matured bovine oocytes is available for development of an in vitro embryo production system. Oocyte quality relates closely to oocyte fatty acid composition and mitochondrial distribution. The purpose of this study was to examine the influence of the quality of cumulus–oocyte complexes (COCs) and serum supplementation in IVM medium on the distribution of bovine oocyte specific gravities by sedimentation with Percoll before and after IVM. COCs were aspirated from abattoir-derived ovaries and were classified as classes A to D by the morphology of their cumulus cell layers as follows: class A, compact and more than 3 layers thick; class B, compact but &lt;3 layers; class C, partially naked and &lt;3 layers; and class D, naked or expanded. The classified COCs were cultured in TCM-199 supplemented with 0.1% BSA, 5 µg mL−1 insulin, 10 µg mL−1 transferrin, and 10 ng mL−1 transforming growth factor-α (M199-BITT) for 22–24 h. To evaluate the influence of serum supplementation, oocytes from classes A and B were also incubated in M199-BITT as serum-free culture or TCM-199 supplemented with 10% fetal calf serum as serum-supplemented culture. Percoll solutions were prepared by diluting Percoll with PBS supplemented with 0.3% BSA, 1 mg mL−1 glucose, and 0.2 mM sodium pyrvate to 20, 17.5, 15, 12.5, 10, 7.5, and 5% solutions. After removal of cumulus cells, denuded oocytes were put on the surface of Percoll solution for 3 min, and the precipitated oocytes were transferred to stepwise high density solution. The percent of Percoll solution just before buoyancy was considered as the oocyte specific gravity value. Statistical analysis was performed by one-way ANOVA. Oocytes from class A had the highest specific gravities before and after IVM in all classes (Table 1). After IVM, oocyte specific gravities from classes A and C were higher than those of oocytes before IVM (class A: P &lt; 0.05, class C: P &lt; 0.001). The specific gravities of in vitro-matured oocytes cultured in serum-free medium were higher than those cultured in serum-supplemented medium (15.3 ± 0.3%, n = 71, and 14.0 ± 0.3%, n = 58; P &lt; 0.01). These results show that the specific gravity was affected by the morphological quality of COC, and the culture conditions for IVM may profile the metabolic activity of oocytes during IVM. Table 1.Specific gravities of the bovine oocytes classified by morphology of COC before and after IVM


Reproduction ◽  
2015 ◽  
Vol 149 (4) ◽  
pp. 347-355 ◽  
Author(s):  
Ikuko Yashiro ◽  
Miho Tagiri ◽  
Hayato Ogawa ◽  
Kazuya Tashima ◽  
Seiji Takashima ◽  
...  

The objective of this study was to investigate whether developmental competence of vitrified–warmed bovine oocytes can be improved by antioxidant treatment during recovery culture. In experiment 1, one of the two antioxidants (either l-ascorbic acid or α-tocopherol) was added as a supplement to the recovery culture medium to which postwarming oocytes were exposed for 2 h before IVF. The exposure to α-tocopherol had a positive effect on rescuing the oocytes as assessed by the blastocyst yield 8 days after the IVF (35.1–36.3% vs 19.2–25.8% in untreated postwarming oocytes). Quality of expanding blastocysts harvested on Day 8 was comparable between α-tocopherol-treated vitrification group and fresh control group in terms of total cell number and chromosomal ploidy. In experiment 2, level of reactive oxygen species, mitochondrial activity, and distribution of cortical granules in α-tocopherol-treated postwarming oocytes were assessed. No obvious differences from the control data were found in these parameters. However, the treatment with α-tocopherol increased the percentage of zygotes exhibiting normal single aster formation (90.3% vs 48.0% in untreated postwarming oocytes; 10 h post-IVF). It was concluded that α-tocopherol treatment of vitrified–warmed bovine mature oocytes during recovery culture can improve their revivability, as shown by the high blastocyst yield and the higher mean total cell number in the blastocysts.


2017 ◽  
Vol 65 (4) ◽  
pp. 546-555
Author(s):  
Tayita Suttirojpattana ◽  
Tamás Somfai ◽  
Satoko Matoba ◽  
Takashi Nagai ◽  
Rangsun Parnpai ◽  
...  

This study determined the optimum storage vessel and the effects of resveratrol for the storage of in vitro matured (IVM) bovine oocytes. After IVM, the oocytes were kept in a Hepes-buffered medium at 25 °C for 20 h in different containers including Eppendorf tubes (ET) made of polypropylene (PP) and polystyrene (PS), and tissue culture tubes (TCT) made of PP, PS, and glass. Then oocytes were subjected to IVF and subsequent in vitro embryo development was compared among the groups and to that of a control group without storage. The percentage of blastocyst development in the control group was significantly higher than in the stored groups (P < 0.05). Among oocytes stored in TCT, the percentage of blastocyst development of oocytes stored in glass TCT was significantly higher than that of oocytes stored in PP and PS TCT (P < 0.05); however, it did not differ from that of oocytes stored in ET. The quality of blastocysts did not differ among the control and stored groups. Embryo development was not affected when 0.1, 1 or 10 μM resveratrol was added to the medium during oocyte storage. In conclusion, glass tubes were optimal for oocyte storage and resveratrol did not improve the development of stored oocytes.


Sign in / Sign up

Export Citation Format

Share Document