serum supplementation
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 1)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260123
Author(s):  
Edgar Joel Soto-Moreno ◽  
Ahmed Balboula ◽  
Christine Spinka ◽  
Rocío Melissa Rivera

Serum supplementation during bovine embryo culture has been demonstrated to promote cell proliferation and preimplantation embryo development. However, these desirable outcomes, have been associated with gene expression alterations of pathways involved in macroautophagy, growth, and development at the blastocyst stage, as well as with developmental anomalies such as fetal overgrowth and placental malformations. In order to start dissecting the molecular pathways by which serum supplementation of the culture medium during the preimplantation stage promotes developmental abnormalities, we examined blastocyst morphometry, inner cell mass and trophectoderm cell allocations, macroautophagy, and endoplasmic reticulum stress. On day 5 post-insemination, > 16 cells embryos were selected and cultured in medium containing 10% serum or left as controls. Embryo diameter, inner cell mass and trophectoderm cell number, and macroautophagy were measured on day 8 blastocysts (BL) and expanded blastocysts (XBL). On day 5 and day 8, we assessed transcript level of the ER stress markers HSPA5, ATF4, MTHFD2, and SHMT2 as well as XBP1 splicing (a marker of the unfolded protein response). Serum increased diameter and proliferation of embryos when compared to the no-serum group. In addition, serum increased macroautophagy of BL when compared to controls, while the opposite was true for XBL. None of the genes analyzed was differentially expressed at any stage, except that serum decreased HSPA5 in day 5 > 16 cells stage embryos. XBP1 splicing was decreased in BL when compared to XBL, but only in the serum group. Our data suggest that serum rescues delayed embryos by alleviating endoplasmic reticulum stress and promotes development of advanced embryos by decreasing macroautophagy.


2020 ◽  
Vol 3 (3) ◽  
pp. 57
Author(s):  
Sara E. Bodbin ◽  
Chris Denning ◽  
Diogo Mosqueira

Twenty years since their first derivation, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have shown promise in disease modelling research, while their potential for cardiac repair is being investigated. However, low transfection efficiency is a barrier to wider realisation of the potential this model system has to offer. We endeavoured to produce a protocol for improved transfection of hPSC-CMs using the ViafectTM reagent by Promega. Through optimisation of four essential parameters: (i) serum supplementation, (ii) time between replating and transfection, (iii) reagent to DNA ratio and (iv) cell density, we were able to successfully transfect hPSC-CMs to ~95% efficiencies. Transfected hPSC-CMs retained high purity and structural integrity despite a mild reduction in viability, and preserved compatibility with phenotyping assays of hypertrophy. This protocol greatly adds value to the field by overcoming limited transfection efficiencies of hPSC-CMs in a simple and quick approach that ensures sustained expression of transfected genes for at least 14 days, opening new opportunities in mechanistic discovery for cardiac-related diseases.


2019 ◽  
Vol 54 ◽  
pp. 69-71 ◽  
Author(s):  
María Iniesta-Cuerda ◽  
Irene Sánchez-Ajofrín ◽  
Olga García-Álvarez ◽  
Alicia Martín-Maestro ◽  
Patricia Peris-Frau ◽  
...  

2019 ◽  
Vol 47 (3-4) ◽  
pp. 116-127
Author(s):  
Michelle Hesler ◽  
Yvonne Kohl ◽  
Sylvia Wagner ◽  
Hagen von Briesen

Serum supplementation is crucial in in vitro cell culture to provide all the essential nutrients needed for cellular processes. Fetal bovine serum (FBS) is considered the ‘gold standard’, but its production raises serious ethical concerns. Human-derived alternatives to FBS exist in the form of human platelet lysates (hPLs) or human AB serum (ABS). However, these serum products are usually pooled from several donors, in order to have a standardised product without patient-specific deviations. Nevertheless, the use of patient-specific serum in cell culture might be the key to successful transplantation of the cultured cells in medical applications, particularly as it avoids the transmission of infectious components or xenogenic proteins. In addition, the production of non-pooled hPL from single donors is likely to be a cost-effective and time-saving method. The current study used hPL units isolated from single donors and tested their performance as medium supplements for cell culture in comparison with FBS or ABS. This proof-of-concept study aimed to assess the potential of non-pooled hPL for personalised serum supplementation, and thus optimise in vitro models by making them more relevant to human physiology. We showed that A549, HepG2 and Caco-2 human cell lines were generally able to adapt to the new culture conditions and maintain viability, morphology and certain cell-specific characteristics. These results indicate that non-pooled, single patient-derived hPL could be a suitable alternative for in vitro serum supplementation.


Cartilage ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 364-373 ◽  
Author(s):  
John D. Kisiday ◽  
John A. Schwartz ◽  
Suwimol Tangtrongsup ◽  
Laurie R. Goodrich ◽  
Daniel A. Grande

Objective Rats are an early preclinical model for cartilage tissue engineering, and a practical species for investigating the effects of aging. However, rats may be a poor aging model for mesenchymal stem cells (MSCs) based on laboratory reports of a severe decline in chondrogenesis beyond young adulthood. Such testing has not been conducted with MSCs seeded in a scaffold, which can improve the propensity of MSCs to undergo chondrogenesis. Therefore, the objective of this study was to evaluate chondrogenesis of middle-aged rat MSCs encapsulated in agarose. Design MSCs from 14- to 15-month-old rats were expanded, seeded into agarose, and cultured in chondrogenic medium with or without 5% serum for 15 days. Samples were evaluated for cell viability and cartilaginous extracellular matrix (ECM) accumulation. Experiments were repeated using MSCs from 6-week-old rats. Results During expansion, middle-aged rat MSCs demonstrated a diminishing proliferation rate that was improved ~2-fold in part by transient exposure to chondrogenic medium. In agarose culture in defined medium, middle-aged rat MSCs accumulated ECM to a much greater extent than negative controls. Serum supplementation improved cell survival ~2-fold, and increased ECM accumulation ~3-fold. Histological analysis indicated that defined medium supported chondrogenesis in a subset of cells, while serum-supplementation increased the frequency of chondrogenic cells. In contrast, young rat MSCs experienced robust chondrogenesis in defined medium that was not improved with serum-supplementation. Conclusions These data demonstrate a previously-unreported propensity of middle-aged rat MSCs to undergo chondrogenesis, and the potential of serum to enhance chondrogenesis of aging MSCs.


PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0198742 ◽  
Author(s):  
Natalibeth Barrera ◽  
Pedro C. dos Santos Neto ◽  
Federico Cuadro ◽  
Diego Bosolasco ◽  
Ana P. Mulet ◽  
...  

2018 ◽  
Vol 22 (3) ◽  
pp. 212-218 ◽  
Author(s):  
Alireza Mardomi ◽  
Mohammad Nouri ◽  
Laya Farzadi ◽  
Nosratollah Zarghami ◽  
Amir Mehdizadeh ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Marina Ilicic ◽  
Tamas Zakar ◽  
Jonathan W. Paul

Background. Regulation of myometrial progesterone receptor (PR) expression is an unresolved issue central to understanding the mechanism of functional progesterone withdrawal and initiation of labor in women. Objectives. To determine whether pregnant human myometrium undergoes culture-induced changes in PR isoform expression ex situ and, further, to determine if conditions approaching the in vivo environment stabilise PR isoform expression in culture. Methods. Term nonlaboring human myometrial tissues were cultured under specific conditions: serum supplementation, steroids, stretch, cAMP, PMA, PGF2α, NF-κB inhibitors, or TSA. Following 48 h culture, PR-T, PR-A, and PR-B mRNA levels were determined using qRT-PCR. PR-A/PR-B ratios were calculated. Results. PR-T and PR-A expression and the PR-A/PR-B ratio significantly increased in culture. Steroids prevented the culture-induced increase in PR-T and PR-A expression. Stretch blocked the effects of steroids on PR-T and PR-A expression. PMA further increased the PR-A/PR-B ratio, while TSA blocked culture-induced increases of PR-A expression and the PR-A/PR-B ratio. Conclusion. Human myometrial tissue in culture undergoes changes in PR gene expression consistent with transition toward a laboring phenotype. TSA maintained the nonlaboring PR isoform expression pattern. This suggests that preserving histone and/or nonhistone protein acetylation is critical for maintaining the progesterone dependent quiescent phenotype of human myometrium in culture.


Sign in / Sign up

Export Citation Format

Share Document