scholarly journals Analysis of colorectal cancer‐related mutations by liquid biopsy: Utility of circulating cell‐free DNA and circulating tumor cells

2019 ◽  
Vol 110 (11) ◽  
pp. 3497-3509 ◽  
Author(s):  
Kohki Takeda ◽  
Takeshi Yamada ◽  
Goro Takahashi ◽  
Takuma Iwai ◽  
Koji Ueda ◽  
...  
2018 ◽  
Vol 36 (6_suppl) ◽  
pp. 495-495 ◽  
Author(s):  
Armin Soave ◽  
Heidi Schwarzenbach ◽  
Malte Vetterlein ◽  
Jessica Rührup ◽  
Oliver Engel ◽  
...  

495 Background: To investigate detection and oncological impact of circulating tumor cells (CTC) in bladder cancer patients with presence of copy number variations (CNV) of circulating cell-free DNA (cfDNA) treated with radical cystectomy (RC). Methods: Secondary analysis of 85 bladder cancer patients, who were prospectively enrolled and treated with RC at our institution between 2011 and 2014. Blood samples were obtained preoperatively. For CTC analysis, blood was analyzed with the CellSearch system (Janssen). cfDNA was extracted from serum using the PME DNA Extraction kit (Analytik Jena). Multiplex ligation-dependent probe amplification (MLPA) was carried out to identify CNV of cfDNA. In a single reaction MLPA allows analyzing CNV in 43 chromosomal regions containing 37 genes. Results: MLPA was suitable for characterization of CNV in 72 patients (84.7%). Data on CTC was available for 45 of these patients (62.5%). In total, 7 patients (15.6%) had CTC with a median CTC count of one (IQR: 1-3). In 21 patients (46.7%), one to 6 deleted or amplified chromosomal regions were detected with a median CNV count of 2 (IQR: 1-2). Overall, most changes were located in the genes CDH1, RIPK2 and ZFHX3 in 8 patients (17.8%), 6 patients (13.3%) and 5 patients (11.1%). Chromosomal aberrations were most frequently found on chromosome 8 in 8 patients (17.8%). Overall, presence of CTC was not associated with CNV status. However, presence of CTC was associated with copy number losses in miR-15a (p = 0.011). Patients with CTC had reduced recurrence-free survival (RFS) compared to patients without CTC (p = 0.012). In combined Kaplan-Meier analysis, patients with CTC plus presence of CNV had reduced cancer-specific survival (CSS) and RFS compared to patients without CTC but with presence of CNV (p≤0.035). In addition, patients with CTC plus presence of CNV had reduced RFS compared to patients without CTC and without presence of CNV (p = 0.028). Conclusions: CTC and CNV of various genes are detectable in peripheral blood of bladder cancer patients. The presence of CTC seems to be associated with CNV of specific genes. CTC have a negative impact on survival in patients with and without presence of CNV.


2017 ◽  
Vol 24 (3) ◽  
pp. 560-568 ◽  
Author(s):  
Giovanna Rossi ◽  
Zhaomei Mu ◽  
Alfred W. Rademaker ◽  
Laura K. Austin ◽  
Kimberly S. Strickland ◽  
...  

2020 ◽  
Vol 9 (0) ◽  
pp. 59-63
Author(s):  
Ayaka Nakamura ◽  
Minako Abe ◽  
Yukie Saeki ◽  
Fumika Kono ◽  
Yasuha Ono ◽  
...  

Author(s):  
Suman Kumar Ray ◽  
Sukhes Mukherjee

: Cell-free DNA (cfDNA) is present in numerous body fluids in addition to initiates generally from blood cells. It is undoubtedly the utmost promising tool among all components of liquid biopsy. Liquid biopsy is a specialized method investigating the nonsolid biological tissue by revealing of circulating cells, cell free DNA etc. that enter body fluids. Since, cancer cells disengage from compact tumors circulate in peripheral blood, evaluating blood of cancer patients holds the opportunities for capture and molecular level analysis of various tumor-derived constituents. Cell free DNA samples can deliver a significant perceptions into oncology, for instance tumor heterogeneity, instantaneous tumor development, response to therapy and treatment, comprising immunotherapy and mechanisms of cancer metastasis. Malignant growth at any phase can outhouse tumor cells in addition to fragments of neoplasticity causing DNA into circulatory system giving noble sign of mutation in the tumor at sampling time. Liquid biopsy distinguishes diverse blood based evolving biomarkers comprising circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) or cfDNA, circulating RNA (cfRNA) and exosomes. Cell free DNA are little DNA fragments found circulating in plasma or serum, just as other fluids present in our body. Cell free DNA involves primarily double stranded nuclear DNA and mitochondrial DNA, present both on a surface level and in the lumen of vesicles. The probable origins of the tumor-inferred portion of cfDNA are apoptosis or tumor necrosis, lysis of CTCs or release of DNA from the tumor cells into circulation. The evolution of innovations, refinement and improvement in therapeutics for determination of cfDNA fragment size and its distribution provide significant information related with pathological conditions of the cell, thus emerging as promising indicator for clinical output in medical biotechnology.


2018 ◽  
Vol 20 ◽  
Author(s):  
Ana Barbosa ◽  
Ana Peixoto ◽  
Pedro Pinto ◽  
Manuela Pinheiro ◽  
Manuel R. Teixeira

AbstractCirculating cell-free DNA (cfDNA) consists of small fragments of DNA that circulate freely in the bloodstream. In cancer patients, a fraction of cfDNA is derived from tumour cells, therefore containing the same genetic and epigenetic alterations, and is termed circulating cell-free tumour DNA. The potential use of cfDNA, the so-called ‘liquid biopsy’, as a non-invasive cancer biomarker has recently received a lot of attention. The present review will focus on studies concerning the potential clinical applications of cfDNA in ovarian cancer patients.


Sign in / Sign up

Export Citation Format

Share Document