scholarly journals Circulating tumor cells (CTC) and Cell-free DNA (cfDNA): Liquid biopsy for cancer diagnostics

2020 ◽  
Vol 9 (0) ◽  
pp. 59-63
Author(s):  
Ayaka Nakamura ◽  
Minako Abe ◽  
Yukie Saeki ◽  
Fumika Kono ◽  
Yasuha Ono ◽  
...  
2017 ◽  
Vol 24 (3) ◽  
pp. 560-568 ◽  
Author(s):  
Giovanna Rossi ◽  
Zhaomei Mu ◽  
Alfred W. Rademaker ◽  
Laura K. Austin ◽  
Kimberly S. Strickland ◽  
...  

2019 ◽  
Vol 110 (11) ◽  
pp. 3497-3509 ◽  
Author(s):  
Kohki Takeda ◽  
Takeshi Yamada ◽  
Goro Takahashi ◽  
Takuma Iwai ◽  
Koji Ueda ◽  
...  

Author(s):  
Suman Kumar Ray ◽  
Sukhes Mukherjee

: Cell-free DNA (cfDNA) is present in numerous body fluids in addition to initiates generally from blood cells. It is undoubtedly the utmost promising tool among all components of liquid biopsy. Liquid biopsy is a specialized method investigating the nonsolid biological tissue by revealing of circulating cells, cell free DNA etc. that enter body fluids. Since, cancer cells disengage from compact tumors circulate in peripheral blood, evaluating blood of cancer patients holds the opportunities for capture and molecular level analysis of various tumor-derived constituents. Cell free DNA samples can deliver a significant perceptions into oncology, for instance tumor heterogeneity, instantaneous tumor development, response to therapy and treatment, comprising immunotherapy and mechanisms of cancer metastasis. Malignant growth at any phase can outhouse tumor cells in addition to fragments of neoplasticity causing DNA into circulatory system giving noble sign of mutation in the tumor at sampling time. Liquid biopsy distinguishes diverse blood based evolving biomarkers comprising circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) or cfDNA, circulating RNA (cfRNA) and exosomes. Cell free DNA are little DNA fragments found circulating in plasma or serum, just as other fluids present in our body. Cell free DNA involves primarily double stranded nuclear DNA and mitochondrial DNA, present both on a surface level and in the lumen of vesicles. The probable origins of the tumor-inferred portion of cfDNA are apoptosis or tumor necrosis, lysis of CTCs or release of DNA from the tumor cells into circulation. The evolution of innovations, refinement and improvement in therapeutics for determination of cfDNA fragment size and its distribution provide significant information related with pathological conditions of the cell, thus emerging as promising indicator for clinical output in medical biotechnology.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
S. Manier ◽  
J. Park ◽  
M. Capelletti ◽  
M. Bustoros ◽  
S. S. Freeman ◽  
...  

Diagnostics ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 192
Author(s):  
Leonie Konczalla ◽  
Anna Wöstemeier ◽  
Marius Kemper ◽  
Karl-Frederik Karstens ◽  
Jakob Izbicki ◽  
...  

The idea of a liquid biopsy to screen, surveil and treat cancer patients is an intensively discussed and highly awaited tool in the field of oncology. Despite intensive research in this field, the clinical application has not been implemented yet and further research has to be conducted. However, one component of the liquid biopsy is circulating tumor cells (CTCs) whose potential for clinical application is evaluated in the following. CTCs can shed from primary tumors to the peripheral blood at any time point during the progress of a malignant disease. Following, one single CTC can be the origin for distant metastasis at later cancer stage. Thus, CTCs have great potential to either be used in cancer diagnostics and patient stratification or to function as a target for new therapeutic approaches to stop tumor dissemination and metastasis at the very early beginning. Due to the biological fundamental role of CTCs in tumor progression, here, we provide an overview of CTCs in gastrointestinal cancers and their potential use in the clinical setting. In particular, we discuss the usage of CTC for screening and stratifying patients’ risk. Moreover, we will discuss the potential role of CTCs for treatment specification and treatment monitoring.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3223
Author(s):  
Verena Lieb ◽  
Amer Abdulrahman ◽  
Katrin Weigelt ◽  
Siegfried Hauch ◽  
Michael Gombert ◽  
...  

Prostate cancer (PCa) is the second most common malignant cancer and is a major cause of morbidity and mortality among men worldwide. There is still an urgent need for biomarkers applicable for diagnosis, prognosis, therapy prediction, or therapy monitoring in PCa. Liquid biopsies, including cell-free DNA (cfDNA) and circulating tumor cells (CTCs), are a valuable source for studying such biomarkers and are minimally invasive. In our study, we investigated the cfDNA of 34 progressive PCa patients, via targeted sequencing, for sequence variants and for the occurrence of CTCs, with a focus on androgen receptor splice variant 7 (AR-V7)-positive CTCs. The cfDNA content was associated with overall survival (OS; p = 0.014), disease-specific survival (DSS; p = 0.004), and time to treatment change (TTC; p = 0.001). Moreover, when considering all sequence variants grouped by their functional impact and allele frequency, a significant association with TTC (p = 0.017) was observed. When investigating only pathogenic or likely pathogenic gene variants, variants of the BRCA1 gene (p = 0.029) and the AR ligand-binding domain (p = 0.050) were associated with a shorter TTC. Likewise, the presence of CTCs was associated with a shorter TTC (p = 0.031). The presence of AR-V7-positive CTCs was associated with TTC (p < 0.001) in Kaplan–Meier analysis. Interestingly, all patients with AR-V7-positive CTCs also carried TP53 point mutations. Altogether, analysis of cfDNA and CTCs can provide complementary information that may support temporal and targeted treatment decisions and may elucidate the optimal choice within the variety of therapy options for advanced PCa patients.


2015 ◽  
Vol 33 (15_suppl) ◽  
pp. 11068-11068
Author(s):  
Masahiko Yanagita ◽  
Cloud Paweletz ◽  
Allison O'Connell ◽  
David Michael Jackman ◽  
Yanan Kuang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document