Bone tissue formation around two titanium implant surfaces placed in bone defects filled with bone substitute material or blood clot: A pilot study

2019 ◽  
Vol 21 (6) ◽  
pp. 1175-1180
Author(s):  
Guilherme dos Santos Trento ◽  
Rubens Spin‐Neto ◽  
Ana Paula Farnezi Bassi ◽  
Roberta Okamoto ◽  
Marisa Aparecida Cabrini Gabrielli ◽  
...  
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Guilherme dos Santos Trento ◽  
Jaqueline Suemi Hassumi ◽  
Paula Buzo Frigério ◽  
Ana Paula Farnezi Bassi ◽  
Roberta Okamoto ◽  
...  

Abstract Objective The aim of this study is to evaluate through gene expression, immunohistochemical and microtomographic (micro-CT) analysis the response of peri-implant bone tissue around titanium implants with different surface treatments, placed in bone defects filled or not with bone substitute materials. In addition, to investigate the hypothesis that porous-hydrophilic surface induces a faster bone formation. Materials and methods Twenty-six animals were divided into two groups according to implant surface treatment. In each tibia, a bone defect was created followed by the placement of one implant. On the left tibia, the defect was filled with blood clot (BC), and on the right tibia, the defect was filled with biphasic hydroxyapatite/β-tricalcium-phosphate (HA/TCP) generating four subgroups: BC-N: bone defect filled with blood clot and porous surface titanium implant installed; BC-A: bone defect filled with blood clot and porous-hydrophilic surface titanium implant installed; HA/TCP-N: bone defect filled with bone substitute material and porous surface titanium implant installed; and HA/TCP-A: bone defect filled with bone substitute material and porous-hydrophilic surface titanium implant installed. The animals were submitted to euthanasia at 15, 30, and 60 days after implant installation. The expression of two genes was evaluated: RUNX2 and BSP. Immunohistochemical analyses were performed for detection of RUNX2, OPN, OCN, OPG, and RANKL antibodies and bone matrix proteins. Finally, four parameters were chosen for micro-CT analysis: trabecular number, separation and thickness, and connectivity density. Results Descriptive analysis showed similar findings among the experimental groups. Moreover, porous-hydrophilic surfaces presented a higher expression of RUNX2, which is probably an indicative of better osteogenesis; although the data from this study may be considered an insufficient support for a concrete statement. Conclusion Porous hydrophilic surface can improve and accelerate protein expression and bone formation.


2012 ◽  
Vol 529-530 ◽  
pp. 300-303 ◽  
Author(s):  
R.P. Félix Lanao ◽  
J.W.M. Hoekstra ◽  
Joop G.C. Wolke ◽  
Sander C.G. Leeuwenburgh ◽  
A.S. Plachokova ◽  
...  

Periodontitis is one of the most common inflammatory diseases, which can lead to early tooth loss. The conventional treatment of periodontitis is to arrest the disease progression. Most reconstructive procedures involve application of bone substitutes, barrier membranes or a combination of both into the bony defects. Calcium phosphate cements (CPCs) are the predominant type of bone substitute material used for reasons of injectability and hence perfect filling potential for bone defects. Recently, injectable apatitic CPCs demonstrated to be more rapidly degradable when combined with poly (lactic-co-glycolic) acid (PLGA) microspheres. Further, PLGA microspheres can be used as a delivery vehicle for growth factors. In this study, the performance of injectable CPCs as a bone substitute material for alveolar bone defects created in Beagle dogs was evaluated. Four CPC-formulations were generated by incorporating hollow or dense PLGA microspheres, either or not loaded with the growth factors (platelet derived growth factor (PDGF) and insulin-like growth factor (IGF). Implantation period was 8 weeks. Bone formation was based on histological and histomorphometrical evaluation. The results demonstrated that filling alveolar bone defects with CPC-dense PLGA revealed significant more bone formation compared to CPC-hollow PLGA either or not loaded with IGF and PDGF. In summary, we conclude that injectable CPC-dense PLGA composites proved to be the most suitable material for a potential use as off the shelf material due to its good biocompatibility, enhanced degradability and subsequent bone formation.


2014 ◽  
Vol 4 (3) ◽  
pp. 62-76 ◽  
Author(s):  
Måns Eeg-Olofsson ◽  
Agneta Lith ◽  
Bo Håkansson ◽  
Sabine Reinfeldt ◽  
Hamidreza Taghavi ◽  
...  

Biomaterials ◽  
2002 ◽  
Vol 23 (23) ◽  
pp. 4523-4531 ◽  
Author(s):  
Milena Fini ◽  
Gianluca Giavaresi ◽  
Nicolò Nicoli Aldini ◽  
Paola Torricelli ◽  
Rodolfo Botter ◽  
...  

2015 ◽  
Vol 41 (6) ◽  
pp. e257-e266 ◽  
Author(s):  
Jonas Lorenz ◽  
Alica Kubesch ◽  
Tadas Korzinskas ◽  
Mike Barbeck ◽  
Constantin Landes ◽  
...  

This study compared the material-specific tissue response to the synthetic, hydroxyapatite-based bone substitute material NanoBone (NB) with that of the xenogeneic, bovine-based bone substitute material Bio-Oss (BO). The sinus cavities of 14 human patients were augmented with NB and BO in a split-mouth design. Six months after augmentation, bone biopsies were extracted for histological and histomorphometric investigation prior to dental implant insertion. The following were evaluated: the cellular inflammatory pattern, the induction of multinucleated giant cells, vascularization, the relative amounts of newly formed bone, connective tissue, and the remaining bone substitute material. NB granules were well integrated in the peri-implant tissue and were surrounded by newly formed bone tissue. Multinucleated giant cells were visible on the surfaces of the remaining granules. BO granules were integrated into the newly formed bone tissue, which originated from active osteoblasts on their surface. Histomorphometric analysis showed a significantly higher number of multinucleated giant cells and blood vessels in the NB group compared to the BO group. No statistical differences were observed in regard to connective tissue, remaining bone substitute, and newly formed bone. The results of this study highlight the different cellular reactions to synthetic and xenogeneic bone substitute materials. The significantly higher number of multinucleated giant cells within the NB implantation bed seems to have no effect on its biodegradation. Accordingly, the multinucleated giant cells observed within the NB implantation bed have characteristics more similar to those of foreign body giant cells than to those of osteoclasts.


Author(s):  
Yunuhen Hernandez-Rodriguez ◽  
Tomasz Lekszycki

AbstractA previous bone remodelling model was presented elsewhere [30], and in the present paper, the same model was tested with new conditions; an interaction between bone tissue, bone substitute material and a dental implant was considered. The bone substitute material was assumed to be dead tissue, which does not synthesizes neither absorbs bone tissue, and it was considered, as well, resolvable. A moving border between the bone substitute material and the bone tissue was studied. The border moved as the newly synthesised bone tissue took over the bone substitute material. After the numerical calculations of time-steps, the whole bone substitute material was replaced by normal bone tissue and the implant was fixed in place only by bone tissue. Dynamical studies of the interaction of bone tissue and implant are used to improved implant design considering different factors, in this case, the presence of bone substitute material helping to fix the implant.


2021 ◽  
Vol 22 (9) ◽  
pp. 4818
Author(s):  
Annica Pröhl ◽  
Milijana Batinic ◽  
Said Alkildani ◽  
Michael Hahn ◽  
Milena Radenkovic ◽  
...  

The present in vivo study analyses both the inflammatory tissue reactions and the bone healing capacity of a newly developed bone substitute material (BSM) based on xenogeneic bone substitute granules combined with hyaluronate (HY) as a water-binding molecule. The results of the hyaluronate containing bone substitute material (BSM) were compared to a control xenogeneic BSM of the same chemical composition and a sham operation group up to 16 weeks post implantationem. A major focus of the study was to analyze the residual hyaluronate and its effects on the material-dependent healing behavior and the inflammatory tissue responses. The study included 63 male Wistar rats using the calvaria implantation model for 2, 8, and 16 weeks post implantationem. Established and Good Laboratory Practice (GLP)-conforming histological, histopathological, and histomorphometrical analysis methods were conducted. The results showed that the new hyaluronate containing BSM was gradually integrated within newly formed bone up to the end of the study that ended in a condition of complete bone defect healing. Thereby, no differences to the healing capacity of the control BSM were found. However, the bone formation in both groups was continuously significantly higher compared to the sham operation group. Additionally, no differences in the (inflammatory) tissue response that was analyzed via qualitative and (semi-) quantitative methods were found. Interestingly, no differences were found between the numbers of pro- and anti-inflammatory macrophages between the three study groups over the entire course of the study. No signs of the HY as a water-binding part of the BSM were histologically detectable at any of the study time points, altogether the results of the present study show that HY allows for an optimal material-associated bone tissue healing comparable to the control xenogeneic BSM. The added HY seems to be degraded within a very short time period of less than 2 weeks so that the remaining BSM granules allow for a gradual osteoconductive bone regeneration. Additionally, no differences between the inflammatory tissue reactions in both material groups and the sham operation group were found. Thus, the new hyaluronate containing xenogeneic BSM and also the control BSM have been shown to be fully biocompatible without any differences regarding bone regeneration.


Sign in / Sign up

Export Citation Format

Share Document