Fine‐scale population fragmentation of a grassland butterfly Plebejus argyrognomon inhabiting agricultural field margin and riverbank in rural landscapes

2021 ◽  
Author(s):  
Tadashi Miyashita ◽  
Fuga Matsui ◽  
Hidenori Deto ◽  
Tatsuya Imai ◽  
Natsuko I. Kondo
2019 ◽  
Vol 112 (5) ◽  
pp. 2362-2368
Author(s):  
Yan Liu ◽  
Lei Chen ◽  
Xing-Zhi Duan ◽  
Dian-Shu Zhao ◽  
Jing-Tao Sun ◽  
...  

Abstract Deciphering genetic structure and inferring migration routes of insects with high migratory ability have been challenging, due to weak genetic differentiation and limited resolution offered by traditional genotyping methods. Here, we tested the ability of double digest restriction-site associated DNA sequencing (ddRADseq)-based single nucleotide polymorphisms (SNPs) in revealing the population structure relative to 13 microsatellite markers by using four small brown planthopper populations as subjects. Using ddRADseq, we identified 230,000 RAD loci and 5,535 SNP sites, which were present in at least 80% of individuals across the four populations with a minimum sequencing depth of 10. Our results show that this large SNP panel is more powerful than traditional microsatellite markers in revealing fine-scale population structure among the small brown planthopper populations. In contrast to the mixed population structure suggested by microsatellites, discriminant analysis of principal components (DAPC) of the SNP dataset clearly separated the individuals into four geographic populations. Our results also suggest the DAPC analysis is more powerful than the principal component analysis (PCA) in resolving population genetic structure of high migratory taxa, probably due to the advantages of DAPC in using more genetic variation and the discriminant analysis function. Together, these results point to ddRADseq being a promising approach for population genetic and migration studies of small brown planthopper.


2021 ◽  
Vol 11 (6) ◽  
pp. 2616-2629
Author(s):  
Jake Goodall ◽  
Kristen Marie Westfall ◽  
Hildur Magnúsdóttir ◽  
Snæbjörn Pálsson ◽  
Erla Björk Örnólfsdóttir ◽  
...  

2016 ◽  
Vol 73 (9) ◽  
pp. 2333-2341 ◽  
Author(s):  
Jennifer R. Ovenden ◽  
Bree J. Tillett ◽  
Michael Macbeth ◽  
Damien Broderick ◽  
Fiona Filardo ◽  
...  

Abstract We report population genetic structure and fine-scale recruitment processes for the scallop beds (Pecten fumatus) in Bass Strait and the eastern coastline of Tasmania in southern Australia. Conventional population pairwise FST analyses are compared with novel discriminant analysis of principal components (DAPC) to assess population genetic structure using allelic variation in 11 microsatellite loci. Fine-scale population connectivity was compared with oceanic features of the sampled area. Disjunct scallop beds were genetically distinct, but there was little population genetic structure between beds connected by tides and oceanic currents. To identify recruitment patterns among and within beds, pedigree analyses determined the distribution of parent–offspring and sibling relationships in the sampled populations. Beds in northeastern Bass Strait were genetically distinct to adjacent beds (FST 0.003–0.005) and may not contribute to wider recruitment based on biophysical models of larval movement. Unfortunately, pedigree analyses lacked power to further dissect fine-scale recruitment processes including self-recruitment. Our results support the management of disjunct populations as separate stocks and the protection of source populations among open water beds. The application of DAPC and parentage analyses in the current study provided valuable insight into their potential power to determine population connectivity in marine species with larval dispersal.


Author(s):  
Paula Costa-Urrutia ◽  
Simona Sanvito ◽  
Nelva Victoria-Cota ◽  
Luis Enríquez-Paredes ◽  
Diane Gendron

2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Boon-Peng Hoh ◽  
Lian Deng ◽  
Mat Jusoh Julia-Ashazila ◽  
Zakaria Zuraihan ◽  
Ma’amor Nur-Hasnah ◽  
...  

2017 ◽  
Vol 86 (4) ◽  
pp. 888-898 ◽  
Author(s):  
Lauren A. Rogers ◽  
Geir O. Storvik ◽  
Halvor Knutsen ◽  
Esben M. Olsen ◽  
Nils C. Stenseth

2018 ◽  
Vol 108 (11) ◽  
pp. 1326-1336 ◽  
Author(s):  
Clive H. Bock ◽  
Carolyn A. Young ◽  
Katherine L. Stevenson ◽  
Nikki D. Charlton

Scab (caused by Venturia effusa) is the major disease of pecan in the southeastern United States. There is no information available on the fine-scale population genetic diversity or the occurrence of clonal types at small spatial scales that provides insight into inoculum sources and dispersal mechanisms, and potential opportunity for sexual reproduction. To investigate fine-scale genetic diversity, four trees of cultivar Wichita (populations) were sampled hierarchically: within each tree canopy, four approximately evenly spaced terminals (subpopulations) were selected and up to six leaflets (sub-subpopulations) were sampled from different compound leaves on each terminal. All lesions (n = 1 to 8) on each leaflet were sampled. The isolates were screened against a panel of 29 informative microsatellite markers and the resulting multilocus genotypes (MLG) subject to analysis. Mating type was also determined for each isolate. Of 335 isolates, there were 165 MLG (clonal fraction 49.3%). Nei’s unbiased measure of genetic diversity for the clone-corrected data were moderate to high (0.507). An analysis of molecular variance demonstrated differentiation (P = 0.001) between populations on leaflets within individual terminals and between terminals within trees in the tree canopies, with 93.8% of variance explained among isolates within leaflet populations. Other analyses (minimum-spanning network, Bayesian, and discriminant analysis of principal components) all indicated little affinity of isolate for source population. Of the 335 isolates, most unique MLG were found at the stratum of the individual leaflets (n = 242), with similar total numbers of unique MLG observed at the strata of the terminal (n = 170), tree (n = 166), and orchard (n = 165). Thus, the vast majority of shared clones existed on individual leaflets on a terminal at the scale of 10s of centimeters or less, indicating a notable component of short-distance dispersal. There was significant linkage disequilibrium (P < 0.001), and an analysis of Psex showed that where there were multiple encounters of an MLG, they were most probably the result of asexual reproduction (P < 0.05) but there was no evidence that asexual reproduction was involved in single or first encounters of an MLG (P > 0.05). Overall, the MAT1-1-1 and MAT1-2-1 idiomorphs were at equilibrium (73:92) and in most populations, subpopulations, and sub-subpopulations. Both mating types were frequently observed on the same leaflet. The results provide novel information on the characteristics of populations of V. effusa at fine spatial scales, and provide insights into the dispersal of the organism within and between trees. The proximity of both mating idiomorphs on single leaflets is further evidence of opportunity for development of the sexual stage in the field.


Sign in / Sign up

Export Citation Format

Share Document