scholarly journals Social cues affect quantitative genetic variation and covariation in animal personality traits

Evolution ◽  
2019 ◽  
Vol 73 (3) ◽  
pp. 540-553 ◽  
Author(s):  
Fabian S. Rudin ◽  
Leigh W. Simmons ◽  
Joseph L. Tomkins

Author(s):  
Bruce Walsh ◽  
Michael Lynch

One of the major unresolved issues in quantitative genetics is what accounts for the amount of standing genetic variation in traits. A wide range of models, all reviewed in this chapter, have been proposed, but none fit the data, either giving too much variation or too little apparent stabilizing selection.



Genetics ◽  
1980 ◽  
Vol 95 (3) ◽  
pp. 727-742 ◽  
Author(s):  
R Frankham ◽  
D A Briscoe ◽  
R K Nurthen

ABSTRACT Abdominal bristle selection lines (three high and three low) and controls were founded from a marked homozygous line to measure the contribution of sex-linked "mutations" to selection response. Two of the low lines exhibited a period of rapid response to selection in females, but not in males. There were corresponding changes in female variance, in heritabilities in females, in the sex ratio (a deficiency of females) and in fitness, as well as the appearance of a mutant phenotype in females of one line. All of these changes were due to bb alleles (partial deficiencies for the rRNA tandon) in the X chromosomes of these lines, while the Y chromosomes remained wild-type bb+. We argue that the bb alleles arose by unequal crossing over in the rRNA tandon.—A prediction of this hypothesis is that further changes can occur in the rRNA tandon as selection is continued. This has now been shown to occur.—Our minimum estimate of the rate of occurrence of changes at the rRNA tandon is 3 × 10-4. As this is substantially higher than conventional mutation rates, the questions of the mechanisms and rates of origin of new quantitative genetic variation require careful re-examination.



Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 739-747 ◽  
Author(s):  
Thomas Mitchell-Olds ◽  
Deana Pedersen

Abstract To find the genes controlling quantitative variation, we need model systems where functional information on physiology, development, and gene regulation can guide evolutionary inferences. We mapped quantitative trait loci (QTLs) influencing quantitative levels of enzyme activity in primary and secondary metabolism in Arabidopsis. All 10 enzymes showed highly significant quantitative genetic variation. Strong positive genetic correlations were found among activity levels of 5 glycolytic enzymes, PGI, PGM, GPD, FBP, and G6P, suggesting that enzymes with closely related metabolic functions are coregulated. Significant QTLs were found influencing activity of most enzymes. Some enzyme activity QTLs mapped very close to known enzyme-encoding loci (e.g., hexokinase, PGI, and PGM). A hexokinase QTL is attributable to cis-acting regulatory variation at the AtHXK1 locus or a closely linked regulatory locus, rather than polypeptide sequence differences. We also found a QTL on chromosome IV that may be a joint regulator of GPD, PGI, and G6P activity. In addition, a QTL affecting PGM activity maps within 700 kb of the PGM-encoding locus. This QTL is predicted to alter starch biosynthesis by 3.4%, corresponding with theoretical models, suggesting that QTLs reflect pleiotropic effects of mutant alleles.



2007 ◽  
Vol 19 (12) ◽  
pp. 1923-1931 ◽  
Author(s):  
Alexander Strobel ◽  
Gesine Dreisbach ◽  
Johannes Müller ◽  
Thomas Goschke ◽  
Burkhard Brocke ◽  
...  

Although it is widely accepted that serotonin plays a pivotal role in the modulation of anxiety- and depression-related personality traits as well as in the pathogenesis of anxiety disorders and depression, the role of serotonin in cognition is less clear. In the present study, we investigated the involvement of serotonin in cognitive behaviors by examining the impact of genetic variation in key regulators of serotonergic neurotransmission on behavioral measures in a cognitive control task. Eighty-five healthy participants performed a cued continuous performance task (the AX Continuous Performance Task [AXCPT]) and were genotyped for polymorphisms in the transcriptional control regions of the tryptophan hydroxylase 2 gene (TPH2 G-703T; rs4570625) and the serotonin transporter gene (5-HTTLPR). The core result was that individuals lacking the rare TPH2 T allele were not faster than T allele carriers, but committed fewer errors and were less variable in responding. These findings parallel those of a recent study where an enhancement of executive control in individuals without the rare TPH2 T/T genotype was observed. Together with recent evidence that individuals without the T allele exhibit higher scores in anxiety- and depression-related personality traits, our results underscore the role of the TPH2 G-703T polymorphism in the modulation of behavior and raise the intriguing possibility that genetic variants associated with higher negative emotionality may have beneficial effects on some cognitive functions.





2008 ◽  
Vol 23 (3) ◽  
pp. 473-485 ◽  
Author(s):  
W. Talloen ◽  
S. Van Dongen ◽  
H. Van Dyck ◽  
L. Lens


Behaviour ◽  
2016 ◽  
Vol 153 (13-14) ◽  
pp. 1777-1793 ◽  
Author(s):  
Evan E. Byrnes ◽  
Catarina Vila Pouca ◽  
Sherrie L. Chambers ◽  
Culum Brown

The field of animal personality has received considerable attention in past decades, yet few studies have examined personality in the wild. This study investigated docility, a measure of boldness, in two Port Jackson shark (Heterodontus portusjacksoni) populations using field tests, and if laterality differences explained docility levels. We developed a struggle test as an assay for docility, which is particularly amenable to field studies. The struggle test was effective, and repeatable inter-individual docility differences were observed. Sex, but not population, influenced docility scores, with male sharks being less docile than females. This difference is likely due to the contrasting role each sex plays during mating. We also found individualized lateralization. However, no individual-level relationship between lateralization and docility was detected. Despite reported links between laterality and some personality traits, the relationship between laterality and boldness remains inconclusive in sharks. Further studies will prove essential to clarify the mechanisms behind personality traits in vertebrates.



Sign in / Sign up

Export Citation Format

Share Document