scholarly journals Effects of increased temperature on arctic slimy sculpin Cottus cognatus is mediated by food availability: Implications for climate change

2020 ◽  
Author(s):  
Casey A. Pennock ◽  
Phaedra Budy ◽  
Carla L. Atkinson ◽  
Nick Barrett
Biologia ◽  
2014 ◽  
Vol 69 (11) ◽  
Author(s):  
Longying Wen ◽  
Huigen He ◽  
Yong Wang ◽  
Jimmy Gorimar ◽  
Mark Liu

AbstractThe Chinese Bulbul (Pycnontus sinensis) has an extensive distribution throughout southern China. Investigators have reported that the species has expanded its distribution range northward since 1995. We performed a literature review and analysis to examine the relationships between the range expansion of the species and the changes of climate and habitat. We found that the northward range expansion was associated with the increased temperature and human created habitat. We believe that the combination of the increased temperature and the ability to utilize human created habitat while maintaining genetic diversity resulted in the population increase and range expansion of the species. We suggest that increased temperature and human disturbance could lead to evolutionary and distributional changes of some species such as the Chinese Bulbul, therefore possibly making these species indicators of climate change.


2004 ◽  
Vol 61 (9) ◽  
pp. 1717-1722 ◽  
Author(s):  
M A Gray ◽  
R A Cunjak ◽  
K R Munkittrick

Concerns regarding sentinel species for assessing environmental impacts include residency, abundance, and suitability for measuring responses, if effects are to be attributable to local conditions. Stable isotope analysis was used as a tool to investigate site fidelity of slimy sculpin (Cottus cognatus) to establish residency and exposure for the sculpin. We predicted that sculpin collected from sites adjacent to agricultural activity would show higher δ15N values than those collected from sites in forested areas because of isotopic enrichment by fertilizers in the former. The predominant use of chemical fertilizer applications in the region, however, resulted in no specific enrichment of 15N in sculpin collected in the agricultural region. However, there was an incremental enrichment in the fish muscle tissue of approximately 5‰ in δ13C values in a downstream direction, irrespective of surrounding land use. As a result, the dual-isotope comparison was successful at demonstrating site-specific isotopic signatures across sites for 30 km of the river system. The site-specific signatures suggest that slimy sculpin are not moving considerable distances among sites and are incorporating their isotopic signatures over a narrow spatial scale. The results support the use of the slimy sculpin as a sentinel species for investigating site-specific environmental impacts.


2021 ◽  
Vol 4 (2) ◽  
pp. 159-169
Author(s):  
Eko Sumartono ◽  
Gita Mulyasari ◽  
Ketut Sukiyono

Bengkulu is said to be the center of the world's climate because of the influence of water conditions and the topography of the area where the rain cloud formation starts. The waters in Bengkulu Province become a meeting place for four ocean currents which eventually become an area where the evaporation process of forming rain clouds becomes the rainy or dry season and affects the world climate. Method to analyze descriptively, shows oldeman Classification and satellite rainfall estimation data is added. In relation to the Analysis of Potential Food Availability for the Coastal Areas of Bengkulu Province uses a quantifiable descriptive analysis method based. The results show that most are included in the Oldeman A1 climate zone, which means it is suitable for continuous rice but less production due to generally low radiation intensity throughout the year. In an effort to reduce or eliminate the impact of climate change on food crop production, it is necessary to suggest crop diversification, crop rotation, and the application of production enhancement technologies. Strategies in building food availability as a result of climate change are: First, develop food supplies originating from regional production and food reserves on a provincial scale. Second, Empowering small-scale food businesses which are the dominant characteristics of the agricultural economy, especially lowland rice and horticultural crops. Third, Increase technology dissemination and increase the capacity of farmers in adopting appropriate technology to increase crop productivity and business efficiency. Four, Promote the reduction of food loss through the use of food handling, processing and distribution technologies. 


2015 ◽  
Vol 12 (14) ◽  
pp. 4235-4244 ◽  
Author(s):  
M. Pančić ◽  
P. J. Hansen ◽  
A. Tammilehto ◽  
N. Lundholm

Abstract. The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ~ 20–50 % depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20–37 % compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.


2019 ◽  
Vol 286 (1898) ◽  
pp. 20190018 ◽  
Author(s):  
Amelia R. Cox ◽  
Raleigh J. Robertson ◽  
Ádám Z. Lendvai ◽  
Kennedy Everitt ◽  
Frances Bonier

As species shift their ranges and phenology to cope with climate change, many are left without a ready supply of their preferred food source during critical life stages. Food shortages are often assumed to be driven by reduced total food abundance, but here we propose that climate change may cause short-term food shortages for foraging specialists without affecting overall food availability. We frame this hypothesis around the special case of birds that forage on flying insects for whom effects mediated by their shared food resource have been proposed to cause avian aerial insectivores' decline worldwide. Flying insects are inactive during cold, wet or windy conditions, effectively reducing food availability to zero even if insect abundance remains otherwise unchanged. Using long-term monitoring data from a declining population of tree swallows ( Tachycineta bicolor ), we show that nestlings’ body mass declined substantially from 1977 to 2017. In 2017, nestlings had lower body mass if it rained during the preceding 3 days, though females increased provisioning rates, potentially in an attempt to compensate. Adult body mass, particularly that of the males, has also declined over the long-term study. Mean rainfall during the nestling period has increased by 9.3 ± 0.3 mm decade −1 , potentially explaining declining nestling body mass and population declines. Therefore, we suggest that reduced food availability, distinct from food abundance, may be an important and previously overlooked consequence of climate change, which could be affecting populations of species that specialize on foraging on flying insects.


2015 ◽  
Vol 282 (1801) ◽  
pp. 20142039 ◽  
Author(s):  
Thomas R. Raffel ◽  
Neal T. Halstead ◽  
Taegan A. McMahon ◽  
Andrew K. Davis ◽  
Jason R. Rohr

Climate change is altering global patterns of precipitation and temperature variability, with implications for parasitic diseases of humans and wildlife. A recent study confirmed predictions that increased temperature variability could exacerbate disease, because of lags in host acclimation following temperature shifts. However, the generality of these host acclimation effects and the potential for them to interact with other factors have yet to be tested. Here, we report similar effects of host thermal acclimation (constant versus shifted temperatures) on chytridiomycosis in red-spotted newts ( Notophthalmus viridescens ). Batrachochytrium dendrobatidis ( Bd ) growth on newts was greater following a shift to a new temperature, relative to newts already acclimated to this temperature (15°C versus 25°C). However, these acclimation effects depended on soil moisture (10, 16 and 21% water) and were only observed at the highest moisture level, which induced greatly increased Bd growth and infection-induced mortality. Acclimation effects were also greater following a decrease rather than an increase in temperature. The results are consistent with previous findings that chytridiomycosis is associated with precipitation, lower temperatures and increased temperature variability. This study highlights host acclimation as a potentially general mediator of climate–disease interactions, and the need to account for context-dependencies when testing for acclimation effects on disease.


2019 ◽  
Vol 5 (1) ◽  
pp. 1707607 ◽  
Author(s):  
R. B. Radin Firdaus ◽  
Mahinda Senevi Gunaratne ◽  
Siti Rahyla Rahmat ◽  
Nor Samsinar Kamsi ◽  
Fatih Yildiz

Sign in / Sign up

Export Citation Format

Share Document