Avoiding verisimilitude when modelling ecological responses to climate change: the influence of weather conditions on trapping efficiency in European badgers (Meles meles)

2015 ◽  
Vol 21 (10) ◽  
pp. 3575-3585 ◽  
Author(s):  
Michael J. Noonan ◽  
M. Abidur Rahman ◽  
Chris Newman ◽  
Christina D. Buesching ◽  
David W. Macdonald
2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Shay T. Mullineaux ◽  
Berit Kostka ◽  
Luc Rock ◽  
Neil Ogle ◽  
Nikki J. Marks ◽  
...  

AbstractIsotopic techniques have been used to study phenomena in the geological, environmental, and ecological sciences. For example, isotopic values of multiple elements elucidate the pathways energy and nutrients take in the environment. Isoscapes interpolate isotopic values across a geographical surface and are used to study environmental processes in space and time. Thus, isoscapes can reveal ecological shifts at local scales, and show distribution thresholds in the wider environment at the macro-scale. This study demonstrates a further application of isoscapes, using soil isoscapes of 13C/12C and 15N/14N as an environmental baseline, to understand variation in trophic ecology across a population of Eurasian badgers (Meles meles) at a regional scale. The use of soil isoscapes reduced error, and elevated the statistical signal, where aggregated badger hairs were used, and where individuals were identified using genetic microarray analysis. Stable isotope values were affected by land-use type, elevation, and meteorology. Badgers in lowland habitats had diets richer in protein and were adversely affected by poor weather conditions in all land classes. It is concluded that soil isoscapes are an effective way of reducing confounding biases in macroscale, isotopic studies. The method elucidated variation in the trophic and spatial ecology of economically important taxa at a landscape level. These results have implications for the management of badgers and other carnivores with omnivorous tendencies in heterogeneous landscapes.


Author(s):  
Jennifer Fay

Much of Buster Keaton’s slapstick comedy revolves around his elaborate outdoor sets and the crafty weather design that destroys them. In contrast to D. W. Griffith, who insisted on filming in naturally occurring weather, and the Hollywood norm of fabricating weather in the controlled space of the studio, Keaton opted to simulate weather on location. His elaborately choreographed gags with their storm surges and collapsing buildings required precise control of manufactured rain and wind, along with detailed knowledge of the weather conditions and climatological norms on site. Steamboat Bill, Jr. (1928) is one of many examples of Keaton’s weather design in which characters find themselves victims of elements that are clearly produced by the off-screen director. Keaton’s weather design finds parallels in World War I strategies of creating microclimates of death (using poison gas) as theorized by Peter Sloterdijk.


2013 ◽  
Vol 83 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Lauren B. Buckley ◽  
César R. Nufio ◽  
Joel G. Kingsolver

2021 ◽  
Vol 11 (9) ◽  
pp. 3972
Author(s):  
Azin Velashjerdi Farahani ◽  
Juha Jokisalo ◽  
Natalia Korhonen ◽  
Kirsti Jylhä ◽  
Kimmo Ruosteenoja ◽  
...  

The global average air temperature is increasing as a manifestation of climate change and more intense and frequent heatwaves are expected to be associated with this rise worldwide, including northern Europe. Summertime indoor conditions in residential buildings and the health of occupants are influenced by climate change, particularly if no mechanical cooling is used. The energy use of buildings contributes to climate change through greenhouse gas emissions. It is, therefore, necessary to analyze the effects of climate change on the overheating risk and energy demand of residential buildings and to assess the efficiency of various measures to alleviate the overheating. In this study, simulations of dynamic energy and indoor conditions in a new and an old apartment building are performed using two climate scenarios for southern Finland, one for average and the other for extreme weather conditions in 2050. The evaluated measures against overheating included orientations, blinds, site shading, window properties, openable windows, the split cooling unit, and the ventilation cooling and ventilation boost. In both buildings, the overheating risk is high in the current and projected future average climate and, in particular, during exceptionally hot summers. The indoor conditions are occasionally even injurious for the health of occupants. The openable windows and ventilation cooling with ventilation boost were effective in improving the indoor conditions, during both current and future average and extreme weather conditions. However, the split cooling unit installed in the living room was the only studied solution able to completely prevent overheating in all the spaces with a fairly small amount of extra energy usage.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
L Kuzma ◽  
A Kurasz ◽  
M Niwinska ◽  
EJ Dabrowski ◽  
M Swieczkowski ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background Acute coronary syndromes (ACS) are the leading cause of death all over the world, in the last years chronobiology of their occurrence has been changing. Purpose The aim of this study was to assess the influence of climate change on hospital admissions due to ACS. Methods Medical records of 10,529 patients hospitalized for ACS in 2008–2017 were examined. Weather conditions data were obtained from the Institute of Meteorology. Results Among the patients, 3537 (33.6%) were hospitalized for STEMI, 3947 (37.5%) for NSTEMI, and 3045 (28.9%) for UA. The highest seasonal mean for ACS was recorded in spring (N = 2782, mean = 2.52, SD = 1.7; OR 1.07; 95% CI 1.0-1.2; P = 0.049) and it was a season with the highest temperature changes day to day (Δ temp.=11.7). On the other hand, every 10ºC change in temperature was associated with an increased admission due to ACS by 13% (RR 1.13; 95% CI 1.04-1.3; P = 0.008). Analysis of weekly changes showed that the highest frequency of ACS occurred on Thursday (N = 1703, mean = 2.7, SD = 1.9; OR 1.16; 95% CI 1.0-1.23; P = 0.004), in STEMI subgroup it was Monday (N = 592, mean = 0.9, SD = 1.6, OR 1.2; 95% CI 1.1-1.4; P = 0.002). Sunday was associated with decreased admissions due to all types of ACS (N = 1098, mean = 1.7, SD = 1.4; OR 0.69; 95% CI 0.6-0.8, P < 0.001). In the second half of the study period (2013-2018) the relative risks of hospital admissions due to ACS were 1.043 (95%CI: 1.009-1.079, P = 0.014, lag 0) and 0.957 (95%CI: 0.925-0.990, P = 0.010, lag 1) for each 10ºC decrease in temperature; 1.049 (95% CI: 1.015-1.084, P = 0.004, lag 0) and 1.045 (95%CI: 1.011-1.080, P = 0.008, lag 1) for each 10 hPa decrease in atmospheric pressure and 1.180 (95% CI: 1.078-1.324, P = 0.007, lag 0) for every 10ºC change in temperature. For the first half of the study the risk was significantly lower. Conclusion We observed a shift in the seasonal peak of ACS occurrence from winter to spring which may be related to temperature fluctuation associated with climate change in this season. The lowest frequency of ACS took place on weekends. Atmospheric changes had a much more pronounced effect on admissions due to ACS in the second half of the analyzed period, which is in line with the dynamics of global climate change.


2021 ◽  
Vol 13 (15) ◽  
pp. 8170
Author(s):  
Veronica Sanda Chedea ◽  
Ana-Maria Drăgulinescu  ◽  
Liliana Lucia Tomoiagă  ◽  
Cristina Bălăceanu ◽  
Maria Lucia Iliescu 

Known for its dry and semi-dry white wine, the Târnave vineyard located in central Transylvania is challenged by the current climate change, which has resulted in an increase of the period of active vegetation by approximately 15–20 days, the average annual temperature by 1–1.5 °C and also the amount of useful temperatures (useful thermal balance for the grapevine). Furthermore, the frost periods have been reduced. Transylvania is an important Romanian region for grapevine cultivation. In this context, one can use the climatic changes to expand their wine assortment by cultivating an autochthonous grapevine variety called Amurg. Amurg is a red grape cultivar homologated at SCDVV Blaj, which also homologated 7 cultivars and 11 clones. Because viticulture depends on the stability of meteorological and hydrological parameters of the growing area, its foundations are challenged by climate change. Grapevine production is a long time investment, taking at least five years before the freshly planted vines produce the desired quality berries. We propose the implementation of a climate change-based precision viticulture turn-key solution for environmental monitoring in the Târnave vineyard. This solution aims to evaluate the grapevine’s micro-climate to extend the sustainable cultivation of the Amurg red grapes cultivar in Transylvania with the final goal of obtaining Protected Designation of Origin (PDO) rosé and red wines from this region. Worldwide, the changing conditions from the existing climate (a 30-year average), used in the past hundred years to dictate local standards, such as new and erratic trends of temperature and humidity regimes, late spring freezes, early fall frosts, storms, heatwaves, droughts, area wildfires, and insect infestations, would create dynamic problems for all farmers to thrive. These conditions will make it challenging to predict shifts in each of the components of seasonal weather conditions. Our proposed system also aims to give a solution that can be adapted to other vineyards as well.


2015 ◽  
Vol 24 (12) ◽  
pp. 3138-3150 ◽  
Author(s):  
Yung Wa Sin ◽  
Geetha Annavi ◽  
Chris Newman ◽  
Christina Buesching ◽  
Terry Burke ◽  
...  

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Georgiana Deak ◽  
Andrei Daniel Mihalca ◽  
Joerg Hirzmann ◽  
Vito Colella ◽  
Flaviu Alexandru Tăbăran ◽  
...  

2004 ◽  
Vol 263 (4) ◽  
pp. 385-392 ◽  
Author(s):  
D. W. Macdonald ◽  
C. D. Buesching ◽  
P. Stopka ◽  
J. Henderson ◽  
S. A. Ellwood ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document