scholarly journals Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments

2016 ◽  
Vol 23 (3) ◽  
pp. 1282-1291 ◽  
Author(s):  
Jordi Sardans ◽  
Mireia Bartrons ◽  
Olga Margalef ◽  
Albert Gargallo-Garriga ◽  
Ivan A. Janssens ◽  
...  
Author(s):  
Luitgard Schwendenmann ◽  
Beate Michalzik

Kauri dieback, caused by Phytophthora agathidicida, is an ecosystem disturbance that poses a recent threat to the survival of kauri (Agathis australis) forests in New Zealand. Throughfall and stemflow play an important role in meeting the nutrient requirements of kauri forests. However, the effects of kauri dieback on canopy nutrient deposition remain unknown. Here we measured throughfall, stemflow and forest floor water yield and nutrient concentrations and fluxes (potassium, calcium, magnesium, manganese, silicon, sulphur, sodium, iron) of ten kauri trees differing in soil P. agathidicida DNA concentration and health status. We did not observe an effect of soil P. agathidicida DNA concentration on throughfall and stemflow water yield. Throughfall and forest floor nutrient concentrations and fluxes tended to decrease (up to 50%) with increasing soil P. agathidicida DNA concentration. Significant effects were found for potassium and manganese fluxes in throughfall, and calcium and silicon fluxes in forest floor leachate. The decline in nutrient input will have implications on plant nutrition, tree health and susceptibility to future pathogen infection in these ecologically unique kauri forests. Given our findings and the increasing spread of Phytophthora species worldwide, research on the underlying physiological mechanisms linking dieback and plant-soil nutrient fluxes is critical.


2019 ◽  
Vol 86 (4) ◽  
pp. 765-770 ◽  
Author(s):  
X.-Y. Li ◽  
P.-P. Fan ◽  
Y. Liu ◽  
G.-L. Hou ◽  
Q. Wang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuta Takahashi ◽  
Kaori Shiojiri ◽  
Akira Yamawo

AbstractAboveground communication between plants is well known to change defense traits in leaves, but its effects on belowground plant traits and soil characteristics have not been elucidated. We hypothesized that aboveground plant-to-plant communication reduces root nodule symbiosis via induction of bactericidal chemical defense substances and changes the soil nutrient environment. Soybean plants were exposed to the volatile organic compounds (VOCs) from damaged shoots of Solidago canadensis var. scabra, and leaf defense traits (total phenolics, saponins), root saponins, and root nodule symbiosis traits (number and biomass of root nodules) were measured. Soil C/N ratios and mineral concentrations were also measured to estimate the effects of resource uptake by the plants. We found that total phenolics were not affected. However, plants that received VOCs had higher saponin concentrations in both leaves and roots, and fewer root nodules than untreated plants. Although the concentrations of soil minerals did not differ between treatments, soil C/N ratio was significantly higher in the soil of communicated plants. Thus, the aboveground plant-to-plant communication led to reductions in root nodule symbiosis and soil nutrient concentrations. Our results suggest that there are broader effects of induced chemical defenses in aboveground plant organs upon belowground microbial interactions and soil nutrients, and emphasize that plant response based on plant-to-plant communications are a bridge between above- and below-ground ecosystems.


2001 ◽  
Vol 36 (3) ◽  
pp. 225-241 ◽  
Author(s):  
Vladimir G. Onipchenko ◽  
Mikhail I. Makarov ◽  
Eddy van der Maarel

2021 ◽  
Author(s):  
Mengjiao Sun ◽  
Enqing Hou ◽  
Jiasen Wu ◽  
Jianqin Huang ◽  
Xingzhao Huang

Abstract Background: Soil nutrients play critical roles in regulating and improving the sustainable development of economic forests. Consequently, an elucidation of the spatial patterns and drivers of soil nutrients in these forests is fundamental to their management. For this study, we collected 314 composite soils at a 0-30 cm depth from a typical hickory plantation in Lin 'an, Zhejiang Province, China. We determined the concentrations of macronutrients (i.e., soil organic carbon, hydrolyzed nitrogen, available phosphorus, and available potassium) and micronutrients (i.e., iron, manganese, zinc, and copper.) of the soils. We employed random forest analysis to quantify the relative importance of soil-forming factors to predict the soil nutrient concentrations, which could then be extrapolated to the entire hickory region. Results: Random forest models explained 61%–88% of the variations in soil nutrient concentrations. The mean annual temperature and mean annual precipitation were the most important predictor of soil macronutrient and micronutrient concentrations. Moreover, parent material was another key predictor of soil available phosphorus and micronutrient concentrations. Mapping results demonstrated the importance of climate in controlling the spatial distribution of soil nutrient concentrations at finer scales, as well as the effect of parent material, topography, stand structure, and management measures of hickory plantations. Conclusions: Our study highlights the biotic factors, abiotic factors, and management factors control over soil macronutrient and micronutrient concentrations, which have significant implications for the sustainability of soil nutrients in forest plantations.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2409
Author(s):  
Hamed Alarefee ◽  
Che Fauziah Ishak ◽  
Daljit Singh Karam ◽  
Radziah Othman

Efficient use of co-composted organic manure with biochar is one of the sustainable management practices in an agriculture system to increase soil fertility and crop yield. The objectives of this research are to evaluate the use of co-composted biochar, biochar in formulation with poultry litter (PL), and PL compost on soil properties and maize growth. Organic amendments were applied at 10 Mg ha−1, and synthetic fertilizer was applied at the recommended rate of maize (N: P2O5: K2O at 60:60:40 kg ha−1). The results showed that addition of organic amendment significantly increased the total biomass parameter compared to the control, which ranged from 23.2% to 988.5%. The pure biochar treatment yielded lower biomass than the control by 27.1%, which was attributed to its low nutrient content. Consequently, the application of the co-composted biochar achieved higher plant height and aerial portion, which ranged from 46.86% to 25.74% and 7.8% to 108.2%, respectively, in comparison to the recommended fertilizer rate. In addition, the soil amended with co-composted biochar had a significant increase in soil organic matter and had significantly higher chlorophyll and nutrient concentrations in plants, which increased with an increase in the biochar ratio of the co-composts. This was probably attributed to the release of the nutrients retained during composting, thereby possibly making the co-composted biochar act as a slow-release fertilizer. In conclusion, the addition of organic manure with biochar enhanced the nutrient supply by gradual release in comparison to the mineral fertilizer.


Ecology ◽  
2018 ◽  
Vol 99 (6) ◽  
pp. 1430-1440 ◽  
Author(s):  
Warwick J. Allen ◽  
Laura A. Meyerson ◽  
Andrew J. Flick ◽  
James T. Cronin

Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1666
Author(s):  
Silvana Pietrosemoli ◽  
Charles Raczkowski ◽  
James T. Green ◽  
Maria Jesús Villamide

This study compares four stocking rates (37, 74, 111 and 148 pigs ha−1) for growing to finishing pigs (18.4 ± 0.5 kg and 118.5 ± 2.0 kg and 35.7 ± 2.1 kg and 125.7 ± 2.3 kg initial and final BW for grazing periods 1 and 2, respectively) and their effect on ground cover and soil traits in bermudagrass (Cynodon dactylon [L.] Pers) pastures, over two 14-week grazing periods (July–September and May–August). The study was conducted at the Center for Environmental Farming systems at the Cherry Research Station, Goldsboro North Carolina. A continuous stocking method was implemented to manage the pasture. The percent ground cover was estimated with a modified step point technique. Soil samples were collected in three sampling positions (center, inner and outer areas of the paddocks) and two soil sampling depths (0–30 and 30–90 cm). The experimental design was a completely randomized block with three field replicates. Data were analyzed using the PROC GLIMMIX procedure of SAS/STAT ® Version 9.4. Greater ground cover and lesser soil nutrient concentrations were registered in bermudagrass paddocks managed with 37 pigs ha−1. The results of this study also validated the existence of a spatial pattern of soil properties, which differed among sampling positions and depths.


Sign in / Sign up

Export Citation Format

Share Document