Combined Histopathologic Risk Score using TP53 Protein Expression, CD8+ T‐cell Density, and Intratumoural Budding is an Independent Predictor of Neoadjuvant Therapy Response in Rectal Adenocarcinoma

2021 ◽  
Author(s):  
Wei Chen ◽  
Lama Farchoukh ◽  
Lindsey Seigh ◽  
Douglas J. Hartman ◽  
Reetesh K. Pai
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Weixia Wang ◽  
Hongyan Jing ◽  
Jican Liu ◽  
Dacheng Bu ◽  
Yingyi Zhang ◽  
...  

Abstract Background The effect of schistosomiasis on CD8+ T cells and then on PD-L1 expression was unknown, and the utility of CD8+ TILs as a biomarker for schistosomal-associated colorectal cancer (SCRC) rarely has been reported. Methods Three hundred thirty-eight patients with colorectal cancer (CRC) were enrolled. Immunohistochemical analysis was conducted to evaluate the expression of PD-L1 and the infiltration of CD8+ T cells. Results In the total cohort, the results showed that CD8+ TIL density was positively correlated with tumoral (p = 0.0001) and stromal PD-L1 expression (p = 0.0102). But there were no correlation between schistosomiasis and CD8+ TILs and PD-L1. Furthermore, CD8+ TIL density (p = 0.010), schistosomiasis (p = 0.042) were independent predictive factors for overall survival (OS). Stromal PD-L1 (sPD-L1) was correlated with OS (p = 0.046), but it was not an independent predictor. In patients without schistosomiasis, CD8 + T cells (p = 0.002) and sPD-L1 (p = 0.005) were associated with better OS. In patients with schistosomiasis, CD8 + T cells were independent prognosis factor (p = 0.045). Conclusions The study showed that CD8+ TILs was an independent predictive factor for OS in CRC and SCRC patients. The expression of PD-L1 was positively associated with CD8 + TILs density. There were no correlation between schistosomiasis and CD8 + TILs and PD-L1. Stromal PD-L1 but not tPD-L1 was significantly associated with OS, whereas it was not an independent prognostic factor.


Cell Reports ◽  
2019 ◽  
Vol 27 (9) ◽  
pp. 2548-2557.e4 ◽  
Author(s):  
Joo-Young Park ◽  
Devon T. DiPalma ◽  
Juntae Kwon ◽  
Juliet Fink ◽  
Jung-Hyun Park

2021 ◽  
Vol 219 (1) ◽  
Author(s):  
Chuan Li ◽  
Yee Peng Phoon ◽  
Keaton Karlinsey ◽  
Ye F. Tian ◽  
Samjhana Thapaliya ◽  
...  

Immune checkpoint inhibitor (ICI) therapy continues to revolutionize melanoma treatment, but only a subset of patients respond. Major efforts are underway to develop minimally invasive predictive assays of ICI response. Using single-cell transcriptomics, we discovered a unique CD8 T cell blood/tumor-shared subpopulation in melanoma patients with high levels of oxidative phosphorylation (OXPHOS), the ectonucleotidases CD38 and CD39, and both exhaustion and cytotoxicity markers. We called this population with high levels of OXPHOS “CD8+ TOXPHOS cells.” We validated that higher levels of OXPHOS in tumor- and peripheral blood–derived CD8+ TOXPHOS cells correlated with ICI resistance in melanoma patients. We then developed an ICI therapy response predictive model using a transcriptomic profile of CD8+ TOXPHOS cells. This model is capable of discerning responders from nonresponders using either tumor or peripheral blood CD8 T cells with high accuracy in multiple validation cohorts. In sum, CD8+ TOXPHOS cells represent a critical immune population to assess ICI response with the potential to be a new target to improve outcomes in melanoma patients.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A421-A421
Author(s):  
James Welsh ◽  
Colette Shen ◽  
Jessica Frakes ◽  
Jiaxin Niu ◽  
Jared Weiss ◽  
...  

BackgroundDespite recent advances, resistance to immune checkpoint inhibitors (ICI), observed in over 80% of treated patients, is currently the main challenge immuno-oncology is facing. Intense efforts are being made to identify combination therapies that could improve ICI response rates. Administered intratumorally, NBTXR3 enhances the energy dose deposited by ionizing radiation within tumor cells, increasing the anti-tumor efficacy of radiation therapy (XRT) without adding toxicity to surrounding tissues. Here we present evidence that NBTXR3 activated by XRT primes the immune system, producing an anti-tumor response, including activation of the cGAS-STING pathway, that overcomes anti-PD-1 resistance both in mice models and patients.MethodsAbscopal assays were conducted in immunocompetent mice. Tumor cell lines, sensitive or resistant to anti-PD-1, were injected in both flanks of mice. Intratumoral injection of NBTXR3 (or vehicle) followed by XRT was performed in right flank (primary) tumors only. Some mice also received anti-PD-1 injections. Tumor growth was monitored, and tumor immune cell infiltrates were analyzed by immunohistochemistry (IHC). Separately, in the phase II/III randomized trial Act.in.Sarc [NCT02379845] patients with locally advanced soft tissue sarcoma (STS) received either NBTXR3+XRT or XRT alone followed by wide tumor resection. Pre- and post-treatment tumor samples from patients in both groups were analyzed by IHC and Digital Pathology for immune biomarkers. The safety and efficacy (RECIST 1.1/iRECIST) of NBTXR3 plus stereotactic ablative radiotherapy (SABR) in combination with anti-PD-1 is being evaluated in three cohorts of patients with advanced cancers [NCT03589339].ResultsPre-clinical studies demonstrated that NBTXR3+XRT induces an immune response a not observed with XRT alone and enhances systemic control. IHC showed significant increase of CD8+ T-cell infiltrates in both NBTXR3+XRT treated and untreated tumors compared to XRT alone. Similarly, increased CD8+ T-cell density (pre- vs post-treatment) was observed in tumor tissues from STS patients treated with NBTXR3+XRT. Tumor samples from the NBTXR3+XRT group also displayed increased PD-1+ cell density. Furthermore, in combination with anti-PD-1, NBTXR3+XRT improved local and systemic control in mice bearing anti-PD-1 resistant lung tumors, as well as resulted in reduced number of spontaneous lung metastases.Preliminary efficacy data from the first in human trial of NBTXR3+XRT in combination with anti-PD-1 showed tumor response in patients who progressed on prior anti-PD-1.ConclusionsThe clinical efficacy of NBTXR3+XRT has been demonstrated as a single agent. We now demonstrate that it potentiates anti-PD-1 treatment to overcome resistance mechanisms. These results highlight the potential of NBTXR3+XRT to positively impact the immuno-oncology field.Ethics ApprovalThis study was approved by local institution’s review board


Sign in / Sign up

Export Citation Format

Share Document