Gedunin, a Novel Natural Substance, Inhibits Ovarian Cancer Cell Proliferation

2009 ◽  
Vol 19 (9) ◽  
pp. 1564-1569 ◽  
Author(s):  
Siddharth G. Kamath ◽  
Ning Chen ◽  
Yin Xiong ◽  
Robert Wenham ◽  
Sachin Apte ◽  
...  

The discovery of more active therapeutic compounds is essential if the outcome for patients with advanced-stage epithelial ovarian cancer is to be improved. Gedunin, an extract of the neem tree, has been used as a natural remedy for centuries in Asia. Recently, gedunin has been shown to have potential in vitro antineoplastic properties; however, its effect on ovarian cancer cells is unknown. We evaluated the in vitro effect of gedunin on SKOV3, OVCAR4, and OVCAR8 ovarian cancer cell lines proliferation, alone and in the presence of cisplatin. Furthermore, we analyzed in vitro gedunin sensitivity data, integrated with genome-wide expression data from 54 cancer cell lines in an effort to identify genes and molecular pathways that underlie the mechanism of gedunin action. In vitro treatment of ovarian cancer cell lines with gedunin alone produced up to an 80% decrease in cell proliferation (P < 0.01) and, combining gedunin with cisplatin, demonstrated up to a 47% (P < 0.01) decrease in cell proliferation compared with cisplatin treatment alone. Bioinformatic analysis of integrated gedunin sensitivity and gene expression data identified 52 genes to be associated with gedunin sensitivity. These genes are involved in molecular functions related to cell cycle control, carcinogenesis, lipid metabolism, and molecular transportation. We conclude that gedunin has in vitro activity against ovarian cancer cells and, further, may enhance the antiproliferative effect of cisplatin. The molecular determinants of in vitro gedunin response are complex and may include modulation of cell survival and apoptosis pathways.

2020 ◽  
Vol 21 (16) ◽  
pp. 5813
Author(s):  
Kyung Jin Eoh ◽  
Hee Jung Kim ◽  
Jong Woo Lee ◽  
Lee Kyung Kim ◽  
Sun-Ae Park ◽  
...  

Background: Despite the recent research implicating E2F8 (E2F Transcription Factor 8) in cancer, the role of E2F8 in the progression of ovarian cancer has remained unclear. Hence, we explored the bio-functional effects of E2F8 knockdown on ovarian cancer cell lines in vitro and in vivo. Methods: The expression of E2F8 was compared between ovarian cancer and noncancer tissues, and its association with the progression-free survival of ovarian cancer patients was analyzed. To demonstrate the function of E2F8 in cell proliferation, migration, and invasion, we employed RNA interference to suppress E2F8 expression in ovarian cancer cell lines. Finally, the effect of E2F8 knockdown was investigated in a xenograft mouse model of ovarian cancer. Results: Ovarian cancer tissue exhibited significantly higher E2F8 expression compared to that of normal ovarian tissue. Clinical data showed that E2F8 was a significant predictor of progression-free survival. Moreover, the prognosis of the ovarian cancer patients with high E2F8 expression was poorer than that of the patients with low E2F8 expression. In vitro experiments using E2F8-knockdown ovarian cancer cell lines demonstrated that E2F8 knockdown inhibited cell proliferation, migration, and tumor invasion. Additionally, E2F8 was a potent inducer and modulator of the expression of epithelial–mesenchymal transition and Notch signaling pathway-related markers. We confirmed the function of E2F8 in vivo, signifying that E2F8 knockdown was significantly correlated with reduced tumor size and weight. Conclusions: Our findings indicate that E2F8 is highly correlated with ovarian cancer progression. Hence, E2F8 can be utilized as a prognostic marker and therapeutic target against ovarian malignancy.


2017 ◽  
Vol 37 (4) ◽  
Author(s):  
Qin Zhang ◽  
Shuxiang Zhang

Ovarian cancer is one of the leading causes of death among gynecological malignancies. Increasing evidence indicate that dysregulation of microRNAs (miRNAs) plays an important role in tumor radioresistance. The aim of the present study is to investigate whether microRNA-214 (miR-214) was involved in radioresistance of human ovarian cancer. Here, we showed that miR-214 was significantly up-regulated in ovarian cancer tissues and radioresistance ovarian cancer cell lines. Transfection of miR-214 agomir in radiosensitive ovarian cancer cell lines promoted them for resistance to ionizing radiation, whereas transfection of miR-214 antagomir in radioresistance ovarian cancer cell lines sensitized them to ionizing radiation again. Furthermore, we found miR-214 effectively promoted tumor radioresistance in xenograft animal experiment. Western blotting and quantitative real-time PCR demonstrated that miR-214 negatively regulated PTEN in radioresistance ovarian cancer cell lines and ovarian cancer tissues. Taken together, our data conclude that miR-214 contributes to radioresistance of ovarian cancer by directly targeting PTEN.


2020 ◽  
Vol 168 (2) ◽  
pp. 171-181 ◽  
Author(s):  
Hui Zhao ◽  
Aixia Wang ◽  
Zhiwei Zhang

Abstract Ovarian cancer has ranked as one of the leading causes of female morbidity and mortality around the world, which affects ∼239,000 patients and causes 152,000 deaths every year. Chemotherapeutic resistance of ovarian cancer remains a devastating actuality in clinic. The aberrant upregulation of long non-coding RNA succinate dehydrogenase complex flavoprotein subunit A pseudogene 1 (lncRNA SDHAP1) in the Paclitaxel (PTX)-resistant ovarian cancer cell lines has been reported. However, studies focussed on SDHAP1 in its regulatory function of chemotherapeutic resistance in ovarian cancer are limited, and the detailed mechanisms remain unclear. In this study, we demonstrated that SDHAP1 was upregulated in PTX-resistant SKOV3 and Hey-8 ovarian cancer cell lines while the level of miR-4465 was downregulated. Knocking-down SDHAP1 induced re-acquirement of chemo-sensitivity to PTX in ovarian cancer cells in vitro. Mechanically, SDHAP1 upregulated the expression of EIF4G2 by sponging miR-4465 and thus facilitated the PTX-induced apoptosis in ovarian cancer cells. The regulation network involving SDHAP1, miR-4465 and EIF4G2 could be a potential therapy target for the PTX-resistant ovarian cancer.


2015 ◽  
Vol 22 (4) ◽  
pp. 577-591 ◽  
Author(s):  
Lingqin Yuan ◽  
Xiugui Sheng ◽  
Adam K Willson ◽  
Dario R Roque ◽  
Jessica E Stine ◽  
...  

Glutamine is one of the main nutrients used by tumor cells for biosynthesis. Therefore, targeted inhibition of glutamine metabolism may have anti-tumorigenic implications. In the present study, we aimed to evaluate the effects of glutamine on ovarian cancer cell growth. Three ovarian cancer cell lines, HEY, SKOV3, and IGROV-1, were assayed for glutamine dependence by analyzing cytotoxicity, cell cycle progression, apoptosis, cell stress, and glucose/glutamine metabolism. Our results revealed that administration of glutamine increased cell proliferation in all three ovarian cancer cell lines in a dose dependent manner. Depletion of glutamine induced reactive oxygen species and expression of endoplasmic reticulum stress proteins. In addition, glutamine increased the activity of glutaminase (GLS) and glutamate dehydrogenase (GDH) by modulating the mTOR/S6 and MAPK pathways. Inhibition of mTOR activity by rapamycin or blocking S6 expression by siRNA inhibited GDH and GLS activity, leading to a decrease in glutamine-induced cell proliferation. These studies suggest that targeting glutamine metabolism may be a promising therapeutic strategy in the treatment of ovarian cancer.


2009 ◽  
Vol 296 (6) ◽  
pp. R1716-R1725 ◽  
Author(s):  
Renee N. Donahue ◽  
Patricia J. McLaughlin ◽  
Ian S. Zagon

Ovarian cancer is the leading cause of death from gynecological malignancies. Understanding the biology of these tumors, as well as treatment modalities, has been challenging. The opioid growth factor (OGF; [Met5]-enkephalin) and the OGF receptor (OGFr) form an endogenous growth-regulating pathway in homeostasis and neoplasia. In this investigation, we examined the relationship of the OGF-OGFr axis to ovarian cancer, and defined its presence, function, and mechanisms. Using OVCAR-3 and SKOV-3 ovarian cancer cell lines, we found that OGF and OGFr were present and functional. Exogenous OGF was observed to have a dose-dependent, serum-independent, reversible, and receptor-mediated inhibitory action on cell proliferation that was dependent on RNA and protein synthesis. The repressive effect of OGF on cell proliferation also was observed in SW626, CAOV-3, and HEY ovarian cancer cell lines. Endogenous OGF was found to be constitutively produced and tonically active on cell replicative activities, with neutralization of this peptide accelerating cell proliferation. Silencing of OGFr using siRNA technology stimulated cell replication, documenting its integral role. The mechanism of OGF-OGFr action on DNA synthesis was related to the cyclin-dependent kinase inhibitory pathway because knockdown of p16 or p21 in OVCAR-3 cells, and p21 in SKOV-3 cells, eliminated OGF's inhibitory effect on growth. These data are the first to report that the OGF-OGFr system is a native biological regulator of cell proliferation in human ovarian cancer. This information will be important in designing treatment strategies for this deadly disease.


2016 ◽  
Vol 64 (4) ◽  
pp. 950.1-950 ◽  
Author(s):  
SH Afroze ◽  
DC Zawieja ◽  
R Tobin ◽  
C Peddaboina ◽  
MK Newell-Rogers ◽  
...  

ObjectiveCinobufotalin (CINO), a cardiotonic steroid (CTS) or bufadienolide, is extracted from the skin secretions of the traditional Chinese medicine giant toads (Chan su). CINO has been used as a cardiotonic, diuretic and a hemostatic agent. Previously we have shown that CINO inhibits the cytotrophoblast cell function. Recently other study has shown that CINO inhibits A549, a lung cancer cell function. In this study, we assessed the effect of CINO on three different ovarian cancer cell lines; SK-OV-3, CRL-1978 and CRL-11731 to confirm whether the effect of CINO is cell specific.Study DesignWe evaluated the effect of CINO on three ovarian cancer cells SK-OV-3, CRL-1978, and CRL-11731 function in vitro. Each Cell lines were treated with different concentrations of CINO (0.1, 1, 5 and 10 µM). For each cell line cell proliferation, migration and invasion were measured by using a CellTiter Assay (Promega), Cytoselect Assay (Cell Biolabs) and by using a FluoroBlock Assay (BD) respectively. Proliferating Cell Nuclear Antigen (PCNA) was also evaluated in cell lysates of CINO treated these 3 ovarian cancer cells by western blot analysis. Cell Cycle arrest and Cell viability were determined by fluorescence-activated cell sorting (FACS) analysis. We also performed Annexin V staining on CINO treated these 3 ovarian cancer cell lines by immunofluorescence to evaluate the pro-apoptotic protein expression. In addition mitochondrial membrane potential has also been measured for all these 3 ovarian cell lines after CINO treatment using MMP kit, by FACS analysis.ResultsConcentration of CINO at 0.5 µM inhibit SK-OV-3, CRL-1978, and CRL-11731 ovarian cancer cells proliferation, migration and invasion without cell death and loss of cell viability but cell viability differs for each cell line. Each cell lines differ in response to CINO doses for PCNA expression as well as Annexin V pro-apoptotic protein expression. CINO decreases mitochondrial membrane potential for SK-OV-3 but for CRL-1978 and CRL-11731 increases in response to CINO treatment.ConclusionCINO is cell specific, as each cancer cell line responds differently. These data demonstrate that the mode of action of CINO is different on these 3 types of ovarian cancer cells.


2020 ◽  
Author(s):  
Mikella Robinson ◽  
Samuel F Gilbert ◽  
Jennifer A Waters ◽  
Omar Lujano-Olazaba ◽  
Jacqueline Lara ◽  
...  

AbstractIdentification of tumor initiating cells (TICs) has traditionally relied on expression of surface markers such as CD133, CD44, and CD117 and enzymes such as aldehyde dehydrogenase (ALDH). Unfortunately, these markers are often cell type specific and not reproducible across patient samples. A more reliable indication of TICs may include elevated expression of stem cell transcription factors such as SOX2, OCT4, and NANOG that function to support long-term self-renewal, multipotency, and quiescence. RNA-sequencing studies presented here highlight a potential role for SOX2 in cell cycle progression in cells grown as 3-D spheroids, which are more tumorigenic and contain higher numbers of TICs than their 2-D monolayer cultured counterparts. SOX2, OCT4, and NANOG have not been comprehensively evaluated in ovarian cancer cell lines, although their expression is often associated with tumorigenic cells. We hypothesize that SOX2, OCT4, and NANOG will be enriched in ovarian TICs and will correlate with chemotherapy resistance, tumor initiation, and expression of traditional TIC markers. To investigate this hypothesis, we evaluated SOX2, OCT4, and NANOG in a panel of eight ovarian cancer cell lines grown as a monolayer in standard 2-D culture or as spheroids in TIC-enriching 3-D culture. Our data show that the high-grade serous ovarian cancer (HGSOC) lines CAOV3, CAOV4, OVCAR4, and OVCAR8 had longer doubling-times, greater resistance to chemotherapies, and significantly increased expression of SOX2, OCT4, and NANOG in TIC-enriching 3-D culture conditions. We also found that in vitro chemotherapy treatment enriches for cells with significantly higher expression of SOX2. We further show that the traditional TIC marker, CD117 identifies ovarian cancer cells with enhanced SOX2, OCT4, and NANOG expression. Tumor-initiation studies and analysis of The Cancer Genome Atlas (TCGA) suggest a stronger role for SOX2 in ovarian cancer relapse compared with OCT4 or NANOG. Overall, our study clarifies the expression of SOX2, OCT4, and NANOG in TICs from a variety of ovarian cancer cell lines. Our findings suggest that SOX2 expression is a stronger indicator of ovarian TICs with enhanced tumor-initiation capacity and potential for relapse. Improved identification of ovarian TICs will advance our understanding of TIC biology and facilitate the design of better therapies to eliminate TICs and overcome chemotherapy resistance and disease relapse.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 13120-13120
Author(s):  
S. L. Bull ◽  
J. O. Schorge ◽  
M. J. Peyton ◽  
L. Xiang ◽  
D. S. Miller ◽  
...  

13120 Background: The human epidermal receptor (HER) family couples binding of extracellular ligands to intracellular tyrosine kinase (TK) signal transduction pathways, contributing to cellular proliferation. Overexpression of HER family members has been associated with poor prognosis in ovarian cancer. There is growing evidence to support that none of the individual HER members can be considered as the stand-alone target in ovarian cancer and that cooperation between them influences therapeutic response. To evaluate this receptor cooperation in ovarian cancer our goal was to determine HER family expression and to quantify inhibition of HER1 alone compared to inhibition of HER1/HER2 combined. Methods: HER1, HER2, HER3 and HER4 expression was determined by Western blot in 9 ovarian cancer cell lines. Ovarian cancer cell proliferation was determined after inhibition of HER1 using the monoclonal antibody cetuximab, the TK inhibitor gefitinib, or combination of the two. To quantify the combined inhibition of HER1/HER2, 3 cell lines were selected with variable HER1 and HER2 expression. Cell proliferation was then determined in these 3 cell lines after treatment with cetuximab combined with the monoclonal HER2 antibody, trastuzumab. IC50 values were calculated for all treatment arms and compared. A lung cancer cell line (HCC827), with a HER1 TK mutation and sensitivity to gefitinib and cetuximab, was used as a positive control. Results: HER1 was overexpressed in 3/9 ovarian cancer cell lines, HER2 in 1/9, HER3 in 2/9, and HER4 in 4/9. Minimal to no growth inhibition was seen in the 9 cell lines after blocking HER1 with cetuximab, gefitinib, or the combination of both. In the 3 cell lines selected for HER1 and HER2 expression, there was no growth inhibition achieved despite combining cetuximab with trastuzumab. However, this treatment combination increased resistance in 1 of the 3 cell lines (HCC60), noted to overexpress HER1, 2, and 4. Conclusions: Ovarian cancer has variable HER family expression. No correlation was found between HER1 and HER2 overexpression and response to their targeted inhibition. Our findings support the concept the entire HER family plays a role in ovarian cancer growth and suggest an equilibrium shift of HER heterodimerization may play an important role in maintaining cell signaling. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document