Development of a green two-dimensional HPLC-DAD/ESI-MS method for the determination of anthocyanins from Prunus cerasifera var. atropurpurea leaf and improvement of their stability in energy drinks

2018 ◽  
Vol 53 (6) ◽  
pp. 1494-1502 ◽  
Author(s):  
Fang-Fang Chen ◽  
Jie Sang ◽  
Yao Zhang ◽  
Jun Sang
2018 ◽  
Vol 10 (10) ◽  
pp. 1247-1257 ◽  
Author(s):  
Jun Sang ◽  
Bing Li ◽  
Ya-ya Huang ◽  
Qun Ma ◽  
Kang Liu ◽  
...  

This study aimed to extract and separate total anthocyanins from Lycium ruthenicum Murr. by combining deep eutectic solvents (DES) with macroporous resin chromatography and to develop green analytical methods for the determination of anthocyanins.


2021 ◽  
Vol 12 (1) ◽  
pp. 18-22
Author(s):  
Mohd Aftab Alam ◽  
Rayan Saud Al-Arifi ◽  
Abdulaziz Abdullah Al-Qarni ◽  
Abdullah Shaya Al-Dosseri ◽  
Fahad Ibrahim Al-Jenoobi

A rapid UPLC-ESI-MS method was developed for simultaneous determination of caffeine and taurine in beverages (energy drinks and soft drinks). The molecular ions of caffeine and taurine were identified in single ion recording mode at m/z 194.98 and 125.86, respectively. The mass spectrometer parameters were optimized as: capillary voltage 3.0 kV, cone voltage 35 V, extractor 3 V, RF Lens 0.1 V, source temperature 150 °C, desolvation temperature 350 °C, nitrogen 600 L/h, LMR1 7.9, HMR1 15.2, IE1 0.30. The mobile phase comprising methanol (0.1% formic acid) (A) and water (5 mM ammonium acetate) (B) was used in gradient mode. The mobile phase components A and B were pumped in 80:20 (v:v) ratio from 0-0.44 min, and then 100% of component A was pumped between 0.45-0.68 min, and at 0.69 min the composition was returned to 80:20 (v:v) ratio of A and B till 2.0 min. Caffeine and taurine were eluted at 0.46 and 0.43 min, respectively. The samples of energy drinks and soft drinks were diluted in a solvent system comprising methanol and water in 80:20 (v:v) ratio. Our investigations showed that soft drinks SD1 and SD2 have 88.8±4.2% and 110.7±3.6% (w:w) caffeine of their labeled claim. The caffeine content in energy drink brands ED1, ED2, ED3, and ED4 was 76.9±2.5, 65.6±3.4, 88.1±12.6, and 89.1±2.8% (w:w) of labeled claims, respectively. While taurine content in ED1, ED2, ED3, and ED4 was 86.5±8.4, 81.3±27.5, 101.9±4.8, and 97.1±0.3% (w:w) of labeled claim, respectively.


2020 ◽  
Vol 10 (2) ◽  
pp. 122-129
Author(s):  
Haoyu Lv ◽  
Yabin Tang ◽  
Fan Sun ◽  
Shimin An ◽  
Xinjie Yang ◽  
...  

Background:In recent years, more and more researches have shown that neurotransmitters can also be synthesized and released by peripheral non-neural cells. However, specificity and high sensitivity detection means were required for confirming ESCs autocrine glutamate and γ - aminobutyric acid (GABA). Glutamate and GABA are water-soluble and polar compounds which cannot be retained on a reversed phase C18 column, and their contents are often at a trace level. On the other hand, the biological matrix such as cell culture fluid contains a large number of amino acids, vitamins, carbohydrates, inorganic ions and other substances. Therefore, the main problem is the selection of the chromatographic column to avoid matrix interference.Objective:To establish a rapid and reliable method for the simultaneous determination of glutamate and GABA released from embryonic stem cells based on analytical chemistry.Methods:Glutamate and GABA released from mouse embryonic stem cells were determined on the basis of hydrophilic interaction chromatography coupled with electrospray ionization tandem Mass Spectrometry (HILIC- ESI- MS/MS), using isotope internal standards and substitution matrix method.Results:Undifferentiated embryonic stem cells autocrine glutamate and GABA and will reach releasing- reuptacking dynamic equilibriums at different time points. In contrast, neither glutamate nor GABA releasing could be detected from the MEFs, indicating the specificity release of the mESCs in the applied analytic method.Conclusion:A novel, simple, sensitive, selective and quantitative method was developed for determination of the glutamate and GABA from mouse embryonic stem cells.


Sign in / Sign up

Export Citation Format

Share Document