scholarly journals Early-life exposure to gut microbiota from disease-protected mice does not impact disease outcome in type 1 diabetes susceptible NOD mice

2018 ◽  
Vol 97 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Jane A Mullaney ◽  
Juliette E Stephens ◽  
Brooke E Geeling ◽  
Emma E Hamilton-Williams
2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Youjia Hu ◽  
Jian Peng ◽  
Fangyong Li ◽  
F. Susan Wong ◽  
Li Wen

Diabetologia ◽  
2019 ◽  
Vol 62 (7) ◽  
pp. 1291-1296 ◽  
Author(s):  
Vit Neuman ◽  
Ondrej Cinek ◽  
David P. Funda ◽  
Tomas Hudcovic ◽  
Jaroslav Golias ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Xue-Song Zhang ◽  
Jackie Li ◽  
Kimberly A Krautkramer ◽  
Michelle Badri ◽  
Thomas Battaglia ◽  
...  

The early-life intestinal microbiota plays a key role in shaping host immune system development. We found that a single early-life antibiotic course (1PAT) accelerated type 1 diabetes (T1D) development in male NOD mice. The single course had deep and persistent effects on the intestinal microbiome, leading to altered cecal, hepatic, and serum metabolites. The exposure elicited sex-specific effects on chromatin states in the ileum and liver and perturbed ileal gene expression, altering normal maturational patterns. The global signature changes included specific genes controlling both innate and adaptive immunity. Microbiome analysis revealed four taxa each that potentially protect against or accelerate T1D onset, that were linked in a network model to specific differences in ileal gene expression. This simplified animal model reveals multiple potential pathways to understand pathogenesis by which early-life gut microbiome perturbations alter a global suite of intestinal responses, contributing to the accelerated and enhanced T1D development.


Author(s):  
He Zhou ◽  
Lin Sun ◽  
Siwen Zhang ◽  
Xue Zhao ◽  
Xiaokun Gang ◽  
...  

Author(s):  
Qian Huang ◽  
I-Ting Chow ◽  
Claudia Brady ◽  
Amol Raisingani ◽  
Danmeng Li ◽  
...  

ABSTRACTType 1 Diabetes (T1D) is an autoimmune disease characterized by destruction of pancreatic β-cells. Focusing on the main insulin epitope, insulin B-chain 9-23 (insB:9-23), we explored whether a microbial insB:9-23 mimic could modulate T1D. We now demonstrate that a microbial insB:9-23 mimic of Parabacteroides distasonis, a human gut commensal, exclusively stimulates non-obese diabetic (NOD) mouse T cells specific to insB:9-23. Indeed, immunization of NOD mice with either the bacterial mimic peptide or insB:9-23 further verified the cross-reactivity in vivo. Modeling P. distasonis peptide revealed a potential pathogenic register 3 binding. P. distasonis colonization of the female NOD mice gut accelerated T1D onset. In addition, adoptive transfer of splenocytes from NOD mice colonized with P. distasonis to NOD.SCID recipients conferred the enhanced disease phenotype. Integration analysis of published infant T1D gut microbiome data revealed that P. distasonis peptide is not present in the gut microbiota in the first year of life of infants that eventually develop T1D. Furthermore, P. distasonis peptide can stimulate human T cell clones specific to insB:9-23 and T1D patients demonstrated a strong humoral immune response to P. distasonis than controls. Taken together, our studies define a potential molecular mimicry link between T1D pathogenesis and the gut microbiota.One Sentence SummaryThe human gut commensal bacterium, Parabacteroides distasonis, accelerates type 1 diabetes in the NOD mouse model of the disease and involves expression of an insulin B:9-23 epitope mimic, supporting a potential disease mechanism involving molecular mimicry.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juan Huang ◽  
Qiyuan Tan ◽  
Ningwen Tai ◽  
James Alexander Pearson ◽  
Yangyang Li ◽  
...  

Type 1 diabetes is an autoimmune disease caused by T cell-mediated destruction of insulin-producing β cells. BDC2.5 T cells in BDC2.5 CD4+ T cell receptor transgenic Non-Obese Diabetic (NOD) mice (BDC2.5+ NOD mice) can abruptly invade the pancreatic islets resulting in severe insulitis that progresses rapidly but rarely leads to spontaneous diabetes. This prevention of diabetes is mediated by T regulatory (Treg) cells in these mice. In this study, we investigated the role of interleukin 10 (IL-10) in the inhibition of diabetes in BDC2.5+ NOD mice by generating Il-10-deficient BDC2.5+ NOD mice (BDC2.5+Il-10-/- NOD mice). Our results showed that BDC2.5+Il-10-/- NOD mice displayed robust and accelerated diabetes development. Il-10 deficiency in BDC2.5+ NOD mice promoted the generation of neutrophils in the bone marrow and increased the proportions of neutrophils in the periphery (blood, spleen, and islets), accompanied by altered intestinal immunity and gut microbiota composition. In vitro studies showed that the gut microbiota from BDC2.5+Il-10-/- NOD mice can expand neutrophil populations. Moreover, in vivo studies demonstrated that the depletion of endogenous gut microbiota by antibiotic treatment decreased the proportion of neutrophils. Although Il-10 deficiency in BDC2.5+ NOD mice had no obvious effects on the proportion and function of Treg cells, it affected the immune response and activation of CD4+ T cells. Moreover, the pathogenicity of CD4+ T cells was much increased, and this significantly accelerated the development of diabetes when these CD4+ T cells were transferred into immune-deficient NOD mice. Our study provides novel insights into the role of IL-10 in the modulation of neutrophils and CD4+ T cells in BDC2.5+ NOD mice, and suggests important crosstalk between gut microbiota and neutrophils in type 1 diabetes development.


2017 ◽  
Vol 119 ◽  
pp. 219-226 ◽  
Author(s):  
Youjia Hu ◽  
F. Susan Wong ◽  
Li Wen

2015 ◽  
Vol 7 (1) ◽  
pp. 114-119 ◽  
Author(s):  
R. Jacobsen ◽  
M. Moldovan ◽  
A. A. Vaag ◽  
E. Hypponen ◽  
B. L. Heitmann

Fortification of margarine with vitamin D was mandatory in Denmark during 1961–1985. The aim of the study was to assess whether gestational and early infancy exposure to margarine fortification was associated with seasonality of birth in Danish type 1 diabetes (T1D) patients. The risks of T1D in Danes born during various exposure periods around margarine fortification termination in 1985 were analyzed. As expected, the T1D hazards in males unexposed to margarine fortification and born in spring were higher than in males born in autumn: relevant hazard ratios (95% confidence intervals) in various exposure groups ranged from 1.74 (1.112/2.708) to 37.43 (1.804/776.558). There were no indications of seasonality of birth in males exposed to fortification, nor in both exposed and unexposed females. The study suggests that early life exposure to low-dose vitamin D from fortified food eliminates seasonality of birth in T1D male patients. Further studies are required to investigate the identified gender differences.


2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Lital Argaev Frenkel ◽  
Hava Rozenfeld ◽  
Konstantin Rozenberg ◽  
Sanford R Sampson ◽  
Tovit Rosenzweig

ABSTRACT Background Oxidative stress contributes to the pathologic process leading to the development, progression, and complications of type 1 diabetes (T1D). Objective The aim of this study was to investigate the effect of the antioxidant N-acetyl-l-cysteine (NAC), supplemented during early life or adulthood on the development of T1D. Methods NAC was administered to nonobese diabetic (NOD) female mice during pregnancy and lactation, and the development of diabetes was followed in offspring. In an additional set of experiments, offspring of untreated mice were given NAC during adulthood, and the development of T1D was followed. Morbidity rate, insulitis and serum cytokines were measured in the 2 sets of experiments. In addition, markers of oxidative stress, glutathione, lipid peroxidation, total antioxidant capacity and activity of antioxidant enzymes, were followed. Results Morbidity rate was reduced in both treatment protocols. A decrease in interferon γ, tumor necrosis factor α, interleukin 1α, and other type 1 diabetes-associated proinflammatory cytokines was found in mice supplemented with NAC in adulthood or during early life compared with control NOD mice. The severity of insulitis was higher in control NOD mice than in treated groups. NAC administration significantly reduced oxidative stress, as determined by reduced lipid peroxidation and increased total antioxidant capacity in serum and pancreas of mice treated in early life or in adulthood and increased pancreatic glutathione when administrated in adulthood. The activity of antioxidant enzymes was not affected in mice given NAC in adulthood, whereas an increase in the activity of superoxide dismutase and catalase was demonstrated in the pancreas of their offspring. Conclusion NAC decreased morbidity of NOD mice by attenuating the immune response, presumably by eliminating oxidative stress, and might be beneficial in reducing morbidity rates of T1D in high-risk individuals.


Gut ◽  
2017 ◽  
Vol 67 (8) ◽  
pp. 1445-1453 ◽  
Author(s):  
Arno Hänninen ◽  
Raine Toivonen ◽  
Sakari Pöysti ◽  
Clara Belzer ◽  
Hubert Plovier ◽  
...  

ObjectiveIntestinal microbiota is implicated in the pathogenesis of autoimmune type 1 diabetes in humans and in non-obese diabetic (NOD) mice, but evidence on its causality and on the role of individual microbiota members is limited. We investigated if different diabetes incidence in two NOD colonies was due to microbiota differences and aimed to identify individual microbiota members with potential significance.DesignWe profiled intestinal microbiota between two NOD mouse colonies showing high or low diabetes incidence by 16S ribosomal RNA gene sequencing and colonised the high-incidence colony with the microbiota of the low-incidence colony. Based on unaltered incidence, we identified a few taxa which were not effectively transferred and thereafter, transferred experimentally one of these to test its potential significance.ResultsAlthough the high-incidence colony adopted most microbial taxa present in the low-incidence colony, diabetes incidence remained unaltered. Among the few taxa which were not transferred, Akkermansia muciniphila was identified. As A. muciniphila abundancy is inversely correlated to the risk of developing type 1 diabetes-related autoantibodies, we transferred A. muciniphila experimentally to the high-incidence colony. A. muciniphila transfer promoted mucus production and increased expression of antimicrobial peptide Reg3γ, outcompeted Ruminococcus torques from the microbiota, lowered serum endotoxin levels and islet toll-like receptor expression, promoted regulatory immunity and delayed diabetes development.ConclusionTransfer of the whole microbiota may not reduce diabetes incidence despite a major change in gut microbiota, but single symbionts such as A. muciniphila with beneficial metabolic and immune signalling effects may reduce diabetes incidence when administered as a probiotic.


Sign in / Sign up

Export Citation Format

Share Document