Renal physiology and kidney injury during intense ( CrossFit ®) exercise

2021 ◽  
Author(s):  
Pamodi Kodikara ◽  
Rowan Walker ◽  
Scott Wilson
2021 ◽  
Vol 10 (6) ◽  
pp. 1216
Author(s):  
Zaher Armaly ◽  
Safa Kinaneh ◽  
Karl Skorecki

Corona virus disease 2019 (COVID-19) imposes a serious public health pandemic affecting the whole world, as it is spreading exponentially. Besides its high infectivity, SARS-CoV-2 causes multiple serious derangements, where the most prominent is severe acute respiratory syndrome as well as multiple organ dysfunction including heart and kidney injury. While the deleterious impact of SARS-CoV-2 on pulmonary and cardiac systems have attracted remarkable attention, the adverse effects of this virus on the renal system is still underestimated. Kidney susceptibility to SARS-CoV-2 infection is determined by the presence of angiotensin-converting enzyme 2 (ACE2) receptor which is used as port of the viral entry into targeted cells, tissue tropism, pathogenicity and subsequent viral replication. The SARS-CoV-2 cellular entry receptor, ACE2, is widely expressed in proximal epithelial cells, vascular endothelial and smooth muscle cells and podocytes, where it supports kidney integrity and function via the enzymatic production of Angiotensin 1-7 (Ang 1-7), which exerts vasodilatory, anti-inflammatory, antifibrotic and diuretic/natriuretic actions via activation of the Mas receptor axis. Loss of this activity constitutes the potential basis for the renal damage that occurs in COVID-19 patients. Indeed, several studies in a small sample of COVID-19 patients revealed relatively high incidence of acute kidney injury (AKI) among them. Although SARS-CoV-1 -induced AKI was attributed to multiorgan failure and cytokine release syndrome, as the virus was not detectable in the renal tissue of infected patients, SARS-CoV-2 antigens were detected in kidney tubules, suggesting that SARS-CoV-2 infects the human kidney directly, and eventually induces AKI characterized with high morbidity and mortality. The mechanisms underlying this phenomenon are largely unknown. However, the fact that ACE2 plays a crucial role against renal injury, the deprivation of the kidney of this advantageous enzyme, along with local viral replication, probably plays a central role. The current review focuses on the critical role of ACE2 in renal physiology, its involvement in the development of kidney injury during SARS-CoV-2 infection, renal manifestations and therapeutic options. The latter includes exogenous administration of Ang (1-7) as an appealing option, given the high incidence of AKI in this ACE2-depleted disorder, and the benefits of ACE2/Ang1-7 including vasodilation, diuresis, natriuresis, attenuation of inflammation, oxidative stress, cell proliferation, apoptosis and coagulation.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Enrico Favaro ◽  
Roberta Lazzarin ◽  
Daniela Cremasco ◽  
Erika Pierobon ◽  
Marta Guizzo ◽  
...  

Abstract Background and Aims The modern development of the black box approach in clinical nephrology is inconceivable without a logical theory of renal function and a comprehension of anatomical architecture of the kidney, in health and disease: this is the undisputed contribution offered by Malpighi, Oliver and Trueta starting from the seventeenth century. The machine learning model for the prediction of acute kidney injury, progression of renal failure and tubulointerstitial nephritis is a good example of how different knowledge about kidney are an indispensable tool for the interpretation of model itself. Method Historical data were collected from literature, textbooks, encyclopedias, scientific periodicals and laboratory experimental data concerning these three authors. Results The Italian Marcello Malpighi (1628-1694), born in Crevalcore near Bologna, was Professor of anatomy at Bologna, Pisa and Messina. The historic description of the pulmonary capillaries was made in his second epistle to Borelli published in 1661 and intitled De pulmonibus, by means of the frog as “the microscope of nature” (Fig. 1). It is the first description of capillaries in any circulation. William Harvey in De motu cordis in 1628 (year of publication the same of date of birth of Italian anatomist!) could not see the capillary vessels. This thriumphant discovery will serve for the next reconnaissance of characteristic renal rete mirabile.in the corpuscle of Malpighi, lying within the capsule of Bowman. Jean Redman Oliver (1889-1976), a pathologist born and raised in Northern California, was able to bridge the gap between the nephron and collecting system through meticulous dissections, hand drawn illustrations and experiments which underpin our current understanding of renal anatomy and physiology. In the skillful lecture “When is the kidney not a kidney?” (1949) Oliver summarizes his far-sighted vision on renal physiology and disease in the following sentence: the Kidney in health, if you will, but the Nephrons in disease. Because, the “nephron” like the “kidney” is an abstraction that must be qualified in terms of its various parts, its cellular components and the molecular mechanisms involved in each discrete activity (Fig. 2). The Catalan surgeon Josep Trueta I Raspall (1897-1977) was born in the Poblenou neighborhood of Barcelona. His impact of pioneering and visionary contribution to the changes in renal circulation for the pathogenesis of acute kidney injury was pivotal for history of renal physiology. “The kidney has two potential circulatory circulations. Blood may pass either almost exclusively through one or other of two pathways, or to a varying degree through both”. (Studies of the Renal Circulation, published in 1947). Now this diversion of blood from cortex to the less resistant medullary circulation is known with the eponym Trueta shunt. Conclusion The black box approach to the kidney diseases should be considered by practitioners as a further tool to help to inform model update in many clinical setting. The number of machine learning clinical prediction models being published is rising, as new fields of application are being explored in medicine (Fig. 3). A challenge in the clinical nephrology is to explore the “kidney machine” during each therapeutic diagnostic procedure. Always, the intriguing relationship between the set of nephrological syndromes and kidney diseases cannot disregard the precious notions the specific organization of kidney microcirculation, fruit of many scientific contributions of the work by Malpighi, Oliver and Trueta (Fig. 3).


Author(s):  
Bryan Romito ◽  
Joseph Meltzer

The primary goal of this chapter is to provide the reader with an overview of basic renal physiology and function and to review the identification, pathogenesis, and treatment of acute kidney injury following cardiac surgery. Particular focus will be directed toward the diagnostic criteria for acute kidney injury, short- and long-term impacts on patient outcomes, role of novel biomarkers, mechanisms of acute renal injury, general management principles, preventative strategies, and the influence of anesthetic and surgical techniques on its development. The content of this chapter will serve to underscore a particularly harmful but likely underappreciated problem affecting patients in the cardiothoracic critical care setting.


Author(s):  
Patricia L. Weng ◽  
Katherine Wesseling Perry

This chapter on pediatric nephrology and urology examines normal renal physiology and urological anatomy along with common manifestations of renal and urological dysfunction in children. It reviews the clinical presentation, diagnosis, and management of fluid, electrolyte, and acid-base disorders. It describes the presentation and management of glomerular diseases associated with proteinuria, hematuria, and chronic kidney disease. Inherited diseases and syndromes affecting the kidney, bladder, and urinary tract are described. In addition, age-related changes in glomerular filtration, common pathogens associated with urinary tract infection, the diagnosis and management of inguinal masses and vaginal discharge, and the management of acute kidney injury are discussed. This chapter is written for pediatric residents in training.


2014 ◽  
Vol 306 (3) ◽  
pp. F333-F343 ◽  
Author(s):  
Tania Veuthey ◽  
Dana Hoffmann ◽  
Vishal S. Vaidya ◽  
Marianne Wessling-Resnick

Belgrade rats carry a disabling mutation in the iron transporter divalent metal transporter 1 (DMT1). Although DMT1 plays a major role in intestinal iron absorption, the transporter is also highly expressed in the kidney, where its function remains unknown. The goal of this study was to characterize renal physiology of Belgrade rats. Male Belgrade rats died prematurely with ∼50% survival at 20 wk of age. Necropsy results indicated marked glomerular nephritis and chronic end-stage renal disease. By 15 wk of age, Belgrade rats displayed altered renal morphology associated with sclerosis and fibrosis. Creatinine clearance was significantly lower compared with heterozygote littermates. Urinary biomarkers of kidney injury, including albumin, fibrinogen, and kidney injury molecule-1, were significantly elevated. Pilot morphological studies suggest that nephrogenesis is delayed in Belgrade rat pups due to their low iron status and fetal growth restriction. Such defects in renal development most likely underlie the compromised renal metabolism observed in adult b/b rats. Belgrade rat kidney nonheme iron levels were not different from controls but urinary iron and transferrin levels were higher. These results further implicate an important role for the transporter in kidney function not only in iron reabsorption but also in glomerular filtration of the serum protein.


2009 ◽  
Vol 297 (5) ◽  
pp. F1153-F1165 ◽  
Author(s):  
Balakuntalam S. Kasinath ◽  
Denis Feliers ◽  
Kavithalakshmi Sataranatarajan ◽  
Goutam Ghosh Choudhury ◽  
Myung Ja Lee ◽  
...  

Translation, a process of generating a peptide from the codons present in messenger RNA, can be a site of independent regulation of protein synthesis; it has not been well studied in the kidney. Translation occurs in three stages (initiation, elongation, and termination), each with its own set of regulatory factors. Mechanisms controlling translation include small inhibitory RNAs such as microRNAs, binding proteins, and signaling reactions. Role of translation in renal injury in diabetes, endoplasmic reticulum stress, acute kidney injury, and, in physiological adaptation to loss of nephrons is reviewed here. Contribution of mRNA translation to physiology and disease is not well understood. Because it is involved in such diverse areas as development and cancer, it should prove a fertile field for investigation in renal science.


2017 ◽  
Vol 41 (4) ◽  
pp. 594-598 ◽  
Author(s):  
Lisa M. Harrison-Bernard ◽  
Mihran V. Naljayan ◽  
Jane M. Eason ◽  
Donald E. Mercante ◽  
Tina P. Gunaldo

The primary purpose of conducting an interprofessional education (IPE) experience during the renal physiology block of a graduate-level course was to provide basic science, physical therapy, and physician assistant graduate students with an opportunity to work as a team in the diagnosis, treatment, and collaborative care of a patient with acute kidney injury. The secondary purpose was to enhance the understanding of basic renal physiology principles with a patient case presentation of renal pathophysiology. The overall purpose was to assess the value of IPE integration within a basic science course by examining student perceptions and program evaluation. Graduate-level students operated in interprofessional teams while working through an acute kidney injury patient case. The following Interprofessional Education Collaborative subcompetencies were targeted: Roles/Responsibilities (RR) Behavioral Expectations (RR1, RR4) and Interprofessional Communication (CC) Behavioral Expectations (CC4). Clinical and IPE stimulus questions were discussed both within and between teams with assistance provided by faculty facilitators. Students were given a pre- and postsurvey to determine their knowledge of IPE. There were statistically significant increases from pre- to postsurvey scores for all six IPE questions for all students. Physical therapy and physician assistant students had a statistically significant increase in pre- to postsurvey scores, indicating a more favorable perception of their interprofessional competence for RR1, RR4, and CC4. No changes were noted in pre- to postsurvey scores for basic science graduate students. Incorporating planned IPE experiences into multidisciplinary health science courses represents an appropriate venue to have students learn and apply interprofessional competencies.


Author(s):  
Carl Waldmann ◽  
Andrew Rhodes ◽  
Neil Soni ◽  
Jonathan Handy

This chapter discusses renal disorders and includes discussion on prevention of acute kidney injury, including optimizing renal perfusion with the use of volume expansion, inotropic, vasopressor, and vasodilator medications; modulation of renal physiology, including renal metabolism, tubular obstruction, oxygen radical damage, and renal regeneration and repair. This chapter also discusses the diagnosis of acute kidney injury, including parameters of glomerular function, urine analyses, biomarkers, ultrasound, autoimmune profiling, and renal biopsy.


2015 ◽  
Vol 1 (4) ◽  
pp. 258-265 ◽  
Author(s):  
Yi Guan ◽  
Chuan-Ming Hao

Background: SIRT1 is a nicotinamide adenine dinucleotide-dependent deacetylase belonging to the class III histone deacetylases. Abundantly expressed in the kidney, especially in the renal medulla, SIRT1 is closely involved in renal physiology and pathology. Summary: SIRT1 targets both histone and nonhistone proteins, participates in many important signaling pathways and mediates the regulation of longevity, metabolic homeostasis, acute stress response and DNA integrity. With regard to the kidney, SIRT1 attenuates diabetic albuminuria, reduces blood pressure and related cardiovascular diseases, resists acute kidney injury, delays kidney fibrogenesis, promotes cyst formation and benefits renal ageing. Key Messages: This review summarizes the biology of SIRT1 and focuses on the latest studies concerning SIRT1 as a potential therapeutic target for kidney diseases.


2018 ◽  
Vol 39 (05) ◽  
pp. 556-565 ◽  
Author(s):  
Anthony Bonavia ◽  
Kai Singbartl

AbstractThe liver and kidney are key organs of metabolic homeostasis in the body and display complex interactions. Liver diseases often have direct and immediate effects on renal physiology and function. Conversely, acute kidney injury (AKI) is a common problem in patients with both acute and chronic liver diseases. AKI in patients with acute liver failure is usually multifactorial and involves insults similar to those seen in the general AKI population. Liver cirrhosis affects and is directly affected by aberrations in systemic and renal hemodynamics, inflammatory response, renal handling of sodium and free water excretion, and additional nonvasomotor mechanisms. Subsequent problems, for example, worsening ascites, hyponatremia, and AKI, often complicate management of patients with chronic progressive liver disease and add to their morbidity and mortality. Thus, AKI must be carefully defined and diagnosed in patients with liver disease. The kidney also plays a pivotal role in balancing acid–base disturbances resulting from advanced liver disease, making AKI in the setting of end-stage liver disease very difficult to manage clinically. While renal dysfunction in these patients often resolves following orthotopic liver transplant, dialysis may be required as a bridge to transplantation to mitigate the metabolic disarray found in these critically ill patients.


Sign in / Sign up

Export Citation Format

Share Document