Fine and ultrafine particle removal efficiency of new residential HVAC filters

Indoor Air ◽  
2019 ◽  
Author(s):  
Torkan Fazli ◽  
Yicheng Zeng ◽  
Brent Stephens
2012 ◽  
Vol 187 ◽  
pp. 269-272 ◽  
Author(s):  
Don Dussault ◽  
F. Fournel ◽  
V. Dragoi

Current work describes development, testing and verification of a single wafer megasonic cleaning method utilizing a transducer design that meets the extreme particle neutrality, Particle Removal Efficiency (PRE), and repeatability requirements of production scale wafer bonding and other applications requiring extremely low particle levels.


2013 ◽  
Vol 26 (3) ◽  
pp. 328-334 ◽  
Author(s):  
Kazuya Dobashi ◽  
Kensuke Inai ◽  
Misako Saito ◽  
Toshio Seki ◽  
Takaaki Aoki ◽  
...  

2020 ◽  
Vol 224 ◽  
pp. 117321 ◽  
Author(s):  
Lynn E. Secondo ◽  
Hayat I. Adawi ◽  
John Cuddehe ◽  
Kenneth Hopson ◽  
Allison Schumacher ◽  
...  

2018 ◽  
Vol 50 (5) ◽  
pp. 665-672 ◽  
Author(s):  
Sarim Ahmed ◽  
Hassan Mohsin ◽  
Kamran Qureshi ◽  
Ajmal Shah ◽  
Waseem Siddique ◽  
...  

2019 ◽  
Vol 81 (3) ◽  
Author(s):  
Anita Kusuma Wardani ◽  
Ivan Ivan ◽  
Ivan Ruben Darmawan ◽  
Khoiruddin Khoiruddin ◽  
I Gede Wenten

The air quality in the world has been worsening in the last decades due to industrial, vehicle, cigarettes smoke, forest fire, and fuel usage. In this case, fine particles are the world’s greatest concern due to its aerodynamic properties which enable it to travel throughout the world. The current conventional technologies seem to have lost their reliability due to complexity, low removal efficiency, and high equipment cost. Membrane air filter brings new hope to answer this challenge. It gives high removal efficiency with an acceptable pressure drop to fulfill the need for clean air at a lower price. Recently, the introduction of nanofibre membrane as a low-cost membrane may broaden membrane application in air filtration. Compared to conventional membrane, nanofibre membrane offers some interesting features such as higher porosity, interconnected pore structure, and narrow pore size distribution that provide remarkable permeability. In this paper, the microporous polymeric membrane for air filtration especially for fine particles removal is reviewed including mechanism of fine particle removal, membrane preparation, and factor affecting filtration performance.


2009 ◽  
Vol 23 (12) ◽  
pp. 1709-1721 ◽  
Author(s):  
Francesca Barbagini ◽  
Sandip Halder ◽  
Tom Janssens ◽  
Karine Kenis ◽  
Kurt Wostyn ◽  
...  

2008 ◽  
Vol 42 (20) ◽  
pp. 5003-5014 ◽  
Author(s):  
Michael S. Waring ◽  
Jeffrey A. Siegel ◽  
Richard L. Corsi

2011 ◽  
Vol 695 ◽  
pp. 219-222
Author(s):  
Ree Ho Kim ◽  
Hana Kim ◽  
Jung Hun Lee ◽  
Sang Ho Lee

First-flush rainwater is of great interest in the research on urban environmental protection and rainwater harvesting. It deteriorates the chemical, physical, and microbiological quality of the collected/stored water as well as the water body in an urban area. Accordingly, effective and economic treatment of first-flush rainwater is highly required. This study aimed to develop a technology for the treatment of first-flush rainwater using new filters made of wood fiber mat, dental cotton, and feldspar. The removal of pollutants in first-flush rainwater with each filter material was evaluated. Experiments were carried out using an artificial rainwater solution made of road dust particles (less than 200 um small) and D.I. water that contained ionic species. The SS concentration of the solution was set between 30 and 150 mg/L. Prior to the experiments, the fiber materials were pretreated with NaOH, FeCl3, and Al2O3. The batch test results indicated that the phosphate removal efficiency of the wood fiber mat was 8.6%; of the dental cotton, 34.7%; and of the feldspar, 1.7%. On the other hand, the heavy metal removal efficiency of the wood fiber mat was 91%; of the dental cotton, 26%; and of the feldspar, 0%. The highest cation exchange capacity of the wood fiber mat that was pretreated with NaOH was attributed to the existence of carboxyl and hydroxyl functional groups in the wooden polymers. Combinations of filter materials were found to have been effective in removing particles in the rainwater. The combination of the wood fiber mat with polyethylene beads resulted in 97-98% particle removal. Other combinations such as DP (dental cotton and polyethylene beads), MF (wood fiber mat and feldspar), and DF (dental cotton and feldspar) showed particle removal rates of 90-95%, 84-96%, and 87-94%, respectively. After 30 minutes, all the combinations had a particle removal rate of over 90%.


Sign in / Sign up

Export Citation Format

Share Document