scholarly journals POPULATION DIFFERENTIATION AND GENETIC VARIATION IN HOST CHOICE AMONG PEA APHIDS FROM EIGHT HOST PLANT GENERA

Evolution ◽  
2006 ◽  
Vol 60 (8) ◽  
pp. 1574-1584 ◽  
Author(s):  
Julia Ferrari ◽  
H. Charles J. Godfray ◽  
Adam S. Faulconbridge ◽  
Kim Prior ◽  
Sara Via
Evolution ◽  
2006 ◽  
Vol 60 (8) ◽  
pp. 1574 ◽  
Author(s):  
Julia Ferrari ◽  
H. Charles J. Godfray ◽  
Adam S. Faulconbridge ◽  
Kim Prior ◽  
Sara Via

Oecologia ◽  
2007 ◽  
Vol 153 (2) ◽  
pp. 323-329 ◽  
Author(s):  
Julia Ferrari ◽  
Claire L. Scarborough ◽  
H. Charles J. Godfray

Behaviour ◽  
2021 ◽  
pp. 1-21
Author(s):  
Rosalind K. Humphreys ◽  
Graeme D. Ruxton ◽  
Alison J. Karley

Abstract For herbivorous insects, dropping from the host plant is a commonly-observed antipredator defence. The use of dropping compared to other behaviours and its timing in relation to contact with a predator was explored in both pea aphids (Acyrthosiphon pisum) and potato aphids (Macrosiphum euphorbiae). Pea aphids dropped more frequently in response to ladybird adults (Adalia bipunctata) than lacewing larvae (Chrysoperla carnea). Potato aphids mainly walked away or backed-up in response to both predator types; but they dropped more frequently relative to other non-walking defences when faced with ladybird adults. Contact with a predator was an important influencer of dropping for both species, and most drops occurred from adjacent to the predator. Dropping appears to be a defence adaptively deployed only when the risk of imminent predation is high; factors that increase dropping likelihood include presence of faster-foraging predators such as adult ladybirds, predator proximity, and contact between aphid and predator.


2013 ◽  
Vol 62 (1-6) ◽  
pp. 127-136 ◽  
Author(s):  
P. Androsiuk ◽  
A. Shimono ◽  
J. Westin ◽  
D. Lindgren ◽  
A. Fries ◽  
...  

AbstractEfficient use of any breeding resources requires a good understanding of the genetic value of the founder breeding materials for predicting the gain and diversity in future generations. This study evaluates the distribution of genetic variation and level of relatedness among and within nine breeding populations of Norway spruce for Northern Sweden using nuclear microsatellite markers. A sample set of 456 individuals selected from 140 stands were genotyped with 15 SSR loci. Over all loci each individual was identified with unique multilocus genotype. High genetic diversity (average He=0.820) and low population differentiation (FST=0.0087) characterized this material. Although low in FST, the two northernmost populations were clustered as a distinct group diverged from the central populations. The population differentiation pattern corresponds well with the post glacial migration history of Norway spruce and the current gene flow and human activity in the region. The average inbreeding coefficient was 0.084 after removal loci with high frequency of null alleles. The estimated relatedness of the trees gathered in the breeding populations was very low (average kinship coefficient 0.0077) and not structured. The high genetic variation and low and not structured relatedness between individuals found in the breeding populations confirm that the Norway spruce breeding stock for northern Sweden represent valuable genetic resources for both long-term breeding and conservation programs.


2016 ◽  
Vol 16 (1) ◽  
pp. 31 ◽  
Author(s):  
Jens Joschinski ◽  
Katharina Beer ◽  
Charlotte Helfrich-Förster ◽  
Jochen Krauss

2016 ◽  
Vol 113 (8) ◽  
pp. 2128-2133 ◽  
Author(s):  
Matthew A. Barbour ◽  
Miguel A. Fortuna ◽  
Jordi Bascompte ◽  
Joshua R. Nicholson ◽  
Riitta Julkunen-Tiitto ◽  
...  

Theory predicts that intraspecific genetic variation can increase the complexity of an ecological network. To date, however, we are lacking empirical knowledge of the extent to which genetic variation determines the assembly of ecological networks, as well as how the gain or loss of genetic variation will affect network structure. To address this knowledge gap, we used a common garden experiment to quantify the extent to which heritable trait variation in a host plant determines the assembly of its associated insect food web (network of trophic interactions). We then used a resampling procedure to simulate the additive effects of genetic variation on overall food-web complexity. We found that trait variation among host-plant genotypes was associated with resistance to insect herbivores, which indirectly affected interactions between herbivores and their insect parasitoids. Direct and indirect genetic effects resulted in distinct compositions of trophic interactions associated with each host-plant genotype. Moreover, our simulations suggest that food-web complexity would increase by 20% over the range of genetic variation in the experimental population of host plants. Taken together, our results indicate that intraspecific genetic variation can play a key role in structuring ecological networks, which may in turn affect network persistence.


2020 ◽  
Vol 35 (5) ◽  
pp. 452-464
Author(s):  
Päivi H. Leinonen ◽  
Matti J. Salmela ◽  
Kathleen Greenham ◽  
C. Robertson McClung ◽  
John H. Willis

Environmental variation along an elevational gradient can yield phenotypic differentiation resulting from varying selection pressures on plant traits related to seasonal responses. Thus, genetic clines can evolve in a suite of traits, including the circadian clock, that drives daily cycling in varied traits and that shares its genetic background with adaptation to seasonality. We used populations of annual Mimulus laciniatus from different elevations in the Sierra Nevada in California to explore among-population differentiation in the circadian clock, flowering responses to photoperiod, and phenological traits (days to cotyledon emergence, days to flowering, and days to seed ripening) in controlled common-garden conditions. Further, we examined correlations of these traits with environmental variables related to temperature and precipitation. We observed that the circadian period in leaf movement was differentiated among populations sampled within about 100 km, with population means varying by 1.6 h. Significant local genetic variation occurred within 2 populations in which circadian period among families varied by up to 1.8 h. Replicated treatments with variable ecologically relevant photoperiods revealed marked population differentiation in critical day length for flowering that ranged from 11.0 to 14.1 h, corresponding to the time period between late February and mid-May in the wild. Flowering time varied among populations in a 14-h photoperiod. Regardless of this substantial population-level diversity, obvious linear clinality in trait variability across elevations could not be determined based on our genotypic sample; it is possible that more complex spatial patterns of variation arise in complex terrains such as those in the Sierra Nevada. Moreover, we did not find statistically significant bivariate correlations between population means of different traits. Our research contributes to the understanding of genetic variation in the circadian clock and in seasonal responses in natural populations, highlighting the need for more comprehensive investigations on the association between the clock and other adaptive traits in plants.


Sign in / Sign up

Export Citation Format

Share Document