Role of Crack-Bridging Ligaments in the Cyclic Fatigue Behavior of Alumina

1992 ◽  
Vol 75 (11) ◽  
pp. 2976-2984 ◽  
Author(s):  
Frank Guiu ◽  
Ming Li ◽  
Michael J. Reece
2020 ◽  
Vol 131 ◽  
pp. 105336 ◽  
Author(s):  
Yinan Jiao ◽  
Yifan Zhang ◽  
Shiqing Ma ◽  
Deli Sang ◽  
Yang Zhang ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Y. Fan ◽  
W. Tian ◽  
Y. Guo ◽  
Z. Sun ◽  
J. Xu

The microstructures of Ti6Al4V are complex and strongly affect its mechanical properties and fatigue behavior. This paper investigates the role of microstructure on mechanical and fatigue properties of thin-section Ti6Al4V sheets, with the aim of reviewing the effects of microstructure on fatigue properties where suboptimal microstructures might result following heat treatment of assemblies that may not be suited to further annealing, for example, following laser welding. Samples of Ti6Al4V sheet were subjected to a range of heat treatments, including annealing and water quenching from temperatures ranging from 650°C to 1050°C. Micrographs of these samples were inspected for microstructure, and hardness, 0.2% proof stress, elongation, and fracture strength were measured and attributed back to microstructure. Fractography was used to support the findings from microstructure and mechanical analyses. The strength ranking from high to low for the microstructures of thin Ti6Al4V sheets observed in this study is as follows: acicularα′martensite, Widmanstätten, bimodal, and equiaxed microstructure. The fatigue strength ranking from high to low is as follows: equiaxed, bimodal, Widmanstätten, and acicularα′martensite microstructure.


2020 ◽  
Vol 1002 ◽  
pp. 21-32
Author(s):  
Ahmed R. Alhamaoy ◽  
Ghanim Sh. Sadiq ◽  
Furat I. Hussein ◽  
S.N. Ali

The optimal combination of aluminum quality, sufficient strength, high stress to weight ratio and clean finish make it a good choice in driveshafts fabrication. This study has been devoted to experimentally investigate the effect of applying laser shock peening (LSP) on the fatigue performance for 6061-T6 aluminum alloy rotary shafts. Q-switched pulsed Nd:YAG laser was used with operating parameters of 500 mJ and 600 mJ pulse energies, 12 ns pulse duration and 10 Hz pulse repetition rate. The LSP is applied at the waist of the prepared samples for the cyclic fatigue test. The results show that applying 500 mJ pulse energy yields a noticeable effect on enhancing the fatigue strength by increasing the required number of cycles to fracture the sample. In addition, the effect on increasing the pulse energy from 500 mJ to 600 mJ shows a significant effect in term of creating the endurance limit for the samples.


Sign in / Sign up

Export Citation Format

Share Document