Role of grain structure, grain boundaries, crystallographic texture, precipitates, and porosity on fatigue behavior of Inconel 718 at room and elevated temperatures

2019 ◽  
Vol 149 ◽  
pp. 184-197 ◽  
Author(s):  
Sean Gribbin ◽  
Saeede Ghorbanpour ◽  
Nicholas C. Ferreri ◽  
Jonathan Bicknell ◽  
Igor Tsukrov ◽  
...  
2008 ◽  
Vol 138 ◽  
pp. 91-118 ◽  
Author(s):  
Yuriy S. Nechaev

Specific phase transitions to the compound-like impurity nanosegregation structures at dislocations and grain boundaries in metals and their influence on diffusion-assisted processes are considered, mainly, on the basis of the thermodynamic analysis of the related experimental data. The following systems and aspects are in detail considered: (1) the hydride-like nanosegregation of hydrogen at dislocations and grain boundaries in palladium and their influence on the apparent characteristics of hydrogen solubility and diffusivity in palladium; (2) the physics of the anomalous characteristics of diffusion of Fe and other transition impurities in crystalline Al at elevated temperatures, the role of the compound-like nanosegregation (CLNS) of Fe and the others at dislocations and grain boundaries in Al, analysis of the Mössbauer and diffusion data on CLNS of Fe at grain boundaries and dislocations in Al; (3) some new physical aspects of internal oxidation and nitridation of metals (for Cu-0.3%Fe alloy/Cu2O surface layer, and for (Ni-5%Cr) alloy / N2 gas), the role of the compound-like impurity nanosegregation at dislocations and grain boundaries, study results on the deviations from the classical theories predictions and their interpretation. The possibility is considered of nanotechnology applications of the study results for creation of nanostructured metals with compound-like nanosegregation structures at grain boundaries, in order to obtain specific physical and mechanical properties of such a cellural-type nanocomposites. In particular, it can be complex hydride-like, carbide-like, nitride-like, carbide-nitride-like, oxide-like or intermetallide-like nanosegregation structures at grain boundaries of nanostructured metals.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2308
Author(s):  
Michael D. Sangid ◽  
Andrea Nicolas ◽  
Kartik Kapoor ◽  
Eric Fodran ◽  
John Madsen

Due to the rapid cooling and directional heat flow inherent in metal-based additive manufacturing, Ti-6Al-4V results in epitaxial grain growth and a fiber texture of the prior β phase. While Ti-6Al-4V produced via powder bed, electron beam melted processing can exhibit a range of strength characteristics, recent studies have shown superior strength properties, compared to similar orientations, of conventional plate material (AMS 4911) across a range of elevated temperatures (204 to 371 °C). To investigate this phenomenon, a series of crystal plasticity models was developed for the representative grain structures of Ti-6Al-4V to rationalize if the columnar, fiber texture produced by additive manufacturing (AM) was sufficient to explain the observed strength attributes. As a first step towards understanding this behavior, the grain structure was characterized via electron backscattering diffraction for AM material taken from four specimens (with different build directions), as well as material taken from baseline plate material (along and transverse to the rolling direction), and the resulting microstructures were modeled via a crystal plasticity framework. As expected, the results showed the AM material accounting for only the α grain structure was stronger in the vertical builds and weaker in the horizontal builds compared to the conventional plate counterparts. This suggested that grain morphology and α grain orientation alone provided some information about the relative strengths, but did not explain the overall trends observed from the experiments. To account for the role of texture, the characterized α phase was converted, via variant selection, to its prior β phase for use in the simulations. The results showed that each simulation of the AM prior β phase exhibited a higher strength compared to the baseline plate material, except for one specimen (horizontally built), which had large colonies of soft microtextured regions for the prior β structure. This suggests that some variability was experienced (as anticipated), but the texture (especially of the prior β macrozones) was a key contributor for the unusually high strength observed of the AM Ti-6Al-4V material.


2018 ◽  
Vol 383 ◽  
pp. 133-141
Author(s):  
Alon Kafri ◽  
Alexandra Makonovitsky ◽  
Roni Z. Shneck

While studying activation sintering of tungsten, Evans [5] and Ito and Furusawa [6] revealed that W-Cr-Pd alloys exhibit unexpected oxidation resistance at elevated temperatures. The role of palladium in stimulating oxidation resistance in W-Cr alloys is the main aim of the present contribution. As previously observed, at 800 °C these alloys form a relatively dense protective scale that consists of an inner layer of Cr2O3, an intermediate layer of Cr2WO6 and an external layer of WO3. At 1200 °C only Cr2WO6 layer is found, since the Cr2O3 and WO3 evaporate. To determine the role of paladium, W and W-Pd alloys were coated with Cr layers and undergone diffusion experiments. An extraordinary affinity between the Cr and Pd was revealed, manifested by extremely fast inward diffusion of Cr along grain boundaries. In a second experiment the dissolution of Cr into W grains at 1300°C was followed and found to take place preferentially along grain boundaries. These observations assess that the Pd segregated at grain boundaries provides fast diffusion channels for Cr to the free surface and it imparts the significant improvement of the oxidation resistance of W alloys, as suggested by Lee and Simkovitz [10-12].


2020 ◽  
Vol 62 (2) ◽  
pp. 267
Author(s):  
В.И. Бетехтин ◽  
А.Г. Кадомцев ◽  
М.В. Нарыкова

Using small-angle X-ray scattering, electron microscopy, and density measurements, structural factors have been identified that lead to a decrease in the mechanical stability of ultrafine-grained (UFG) metals and alloys when tested in creep mode at elevated temperatures. It has been established that one of the important factors is nanopores formed during intense plastic deformation. The development of these nanopores in grain boundaries formed during creep is realized by the diffusion mechanism and leads to destruction. The role of dispersed inclusions and high-angle grain boundaries for the strength of UFG metals and alloys under their “short-term” and long-term loading is considered.


2021 ◽  
Vol 19 (2) ◽  
pp. 187
Author(s):  
Varvara Romanova ◽  
Ruslan Balokhonov ◽  
Olga Zinovieva

The paper reviews the results of numerical analyses for the micro-and mesoscale deformation-induced surface phenomena in three-dimensional polycrystals with the explicit account for the grain structure. The role of the free surface and grain boundaries in the appearance of the grain-scale stress concentrations and plastic strain nucleation is illustrated on the examples of aluminum polycrystals. Special attention is paid to the discussion of mesoscale deformation-induced surface roughening under uniaxial tension.


Author(s):  
N.V. Belov ◽  
U.I. Papiashwili ◽  
B.E. Yudovich

It has been almost universally adopted that dissolution of solids proceeds with development of uniform, continuous frontiers of reaction.However this point of view is doubtful / 1 /. E.g. we have proved the active role of the block (grain) boundaries in the main phases of cement, these boundaries being the areas of hydrate phases' nucleation / 2 /. It has brought to the supposition that the dissolution frontier of cement particles in water is discrete. It seems also probable that the dissolution proceeds through the channels, which serve both for the liquid phase movement and for the drainage of the incongruant solution products. These channels can be appeared along the block boundaries.In order to demonsrate it, we have offered the method of phase-contrast impregnation of the hardened cement paste with the solution of methyl metacrylahe and benzoyl peroxide. The viscosity of this solution is equal to that of water.


Author(s):  
Z. Horita ◽  
D. J. Smith ◽  
M. Furukawa ◽  
M. Nemoto ◽  
R. Z. Valiev ◽  
...  

It is possible to produce metallic materials with submicrometer-grained (SMG) structures by imposing an intense plastic strain under quasi-hydrostatic pressure. Studies using conventional transmission electron microscopy (CTEM) showed that many grain boundaries in the SMG structures appeared diffuse in nature with poorly defined transition zones between individual grains. The implication of the CTEM observations is that the grain boundaries of the SMG structures are in a high energy state, having non-equilibrium character. It is anticipated that high-resolution electron microscopy (HREM) will serve to reveal a precise nature of the grain boundary structure in SMG materials. A recent study on nanocrystalline Ni and Ni3Al showed lattice distortion and dilatations in the vicinity of the grain boundaries. In this study, HREM observations are undertaken to examine the atomic structure of grain boundaries in an SMG Al-based Al-Mg alloy.An Al-3%Mg solid solution alloy was subjected to torsion straining to produce an equiaxed grain structure with an average grain size of ~0.09 μm.


Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D.J. Matlock ◽  
W.W. Fisher ◽  
P.M. Tarin ◽  
...  

Coherent annealing-twin boundaries are constant structure and energy interfaces with an average interfacial free energy of ∼19mJ/m2 versus ∼210 and ∼835mJ/m2 for incoherent twins and “regular” grain boundaries respectively in 304 stainless steels (SS). Due to their low energy, coherent twins form carbides about a factor of 100 slower than grain boundaries, and limited work has also shown differences in Cr-depletion (sensitization) between twin versus grain boundaries. Plastic deformation, may, however, alter the kinetics and thermodynamics of twin-sensitization which is not well understood. The objective of this work was to understand the mechanisms of carbide precipitation and Cr-depletion on coherent twin boundaries in deformed SS. The research is directed toward using this invariant structure and energy interface to understand and model the role of interfacial characteristics on deformation-induced sensitization in SS. Carbides and Cr-depletion were examined on a 20%-strain, 0.051%C-304SS, heat treated to 625°C-4.5h, as described elsewhere.


Sign in / Sign up

Export Citation Format

Share Document