scholarly journals Modulation of Membrane Permeability, Cell Proliferation and Cytotoxicity of Antitumor Agents by External ATP in Mouse Tumor Cells

1992 ◽  
Vol 83 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Tsutomu Mure ◽  
Kaiso Sano ◽  
Takayuki Kitagawa
Author(s):  
Lili Quan ◽  
Ryuichi Ohgaki ◽  
Saori Hara ◽  
Suguru Okuda ◽  
Ling Wei ◽  
...  

Abstract Background Tumor angiogenesis is regarded as a rational anti-cancer target. The efficacy and indications of anti-angiogenic therapies in clinical practice, however, are relatively limited. Therefore, there still exists a demand for revealing the distinct characteristics of tumor endothelium that is crucial for the pathological angiogenesis. L-type amino acid transporter 1 (LAT1) is well known to be highly and broadly upregulated in tumor cells to support their growth and proliferation. In this study, we aimed to establish the upregulation of LAT1 as a novel general characteristic of tumor-associated endothelial cells as well, and to explore the functional relevance in tumor angiogenesis. Methods Expression of LAT1 in tumor-associated endothelial cells was immunohistologically investigated in human pancreatic ductal adenocarcinoma (PDA) and xenograft- and syngeneic mouse tumor models. The effects of pharmacological and genetic ablation of endothelial LAT1 were examined in aortic ring assay, Matrigel plug assay, and mouse tumor models. The effects of LAT1 inhibitors and gene knockdown on cell proliferation, regulation of translation, as well as on the VEGF-A-dependent angiogenic processes and intracellular signaling were investigated in in vitro by using human umbilical vein endothelial cells. Results LAT1 was highly expressed in vascular endothelial cells of human PDA but not in normal pancreas. Similarly, high endothelial LAT1 expression was observed in mouse tumor models. The angiogenesis in ex/in vivo assays was suppressed by abrogating the function or expression of LAT1. Tumor growth in mice was significantly impaired through the inhibition of angiogenesis by targeting endothelial LAT1. LAT1-mediated amino acid transport was fundamental to support endothelial cell proliferation and translation initiation in vitro. Furthermore, LAT1 was required for the VEGF-A-dependent migration, invasion, tube formation, and activation of mTORC1, suggesting a novel cross-talk between pro-angiogenic signaling and nutrient-sensing in endothelial cells. Conclusions These results demonstrate that the endothelial LAT1 is a novel key player in tumor angiogenesis, which regulates proliferation, translation, and pro-angiogenic VEGF-A signaling. This study furthermore indicates a new insight into the dual functioning of LAT1 in tumor progression both in tumor cells and stromal endothelium. Therapeutic inhibition of LAT1 may offer an ideal option to potentiate anti-angiogenic therapies.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1816
Author(s):  
Jessica Amarù ◽  
Federica Barbieri ◽  
Marica Arvigo ◽  
Agnese Solari ◽  
Adriana Bajetto ◽  
...  

First-generation somatostatin receptor ligands (fg-SRLs), such as octreotide (OCT), represent the first-line medical therapy in acromegaly. Fg-SRLs show a preferential binding affinity for somatostatin receptor subtype-2 (SST2), while the second-generation ligand, pasireotide (PAS), has high affinity for multiple SSTs (SST5 > SST2 > SST3 > SST1). Whether PAS acts via SST2 in somatotroph tumors, or through other SSTs (e.g., SST5), is a matter of debate. In this light, the combined treatment OCT+PAS could result in additive/synergistic effects. We evaluated the efficacy of OCT and PAS (alone and in combination) on growth hormone (GH) secretion in primary cultures from human somatotroph tumors, as well as on cell proliferation, intracellular signaling and receptor trafficking in the rat GH4C1 cell line. The results confirmed the superimposable efficacy of OCT and PAS in reducing GH secretion (primary cultures), cell proliferation, cAMP accumulation and intracellular [Ca2+] increase (GH4C1 cells), without any additive effect observed for OCT+PAS. In GH4C1 cells, co-incubation with a SST2-selective antagonist reversed the inhibitory effect of OCT and PAS on cell proliferation and cAMP accumulation, while both compounds resulted in a robust internalization of SST2 (but not SST5). In conclusion, OCT and PAS seem to act mainly through SST2 in somatotroph tumor cells in vitro, without inducing any additive/synergistic effect when tested in combination.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 181
Author(s):  
Francesca Zonta ◽  
Christian Borgo ◽  
Camila Paz Quezada Meza ◽  
Ionica Masgras ◽  
Andrea Rasola ◽  
...  

CK2 is a Ser/Thr protein kinase overexpressed in many cancers. It is usually present in cells as a tetrameric enzyme, composed of two catalytic (α or α’) and two regulatory (β) subunits, but it is active also in its monomeric form, and the specific role of the different isoforms is largely unknown. CK2 phosphorylates several substrates related to the uncontrolled proliferation, motility, and survival of cancer cells. As a consequence, tumor cells are addicted to CK2, relying on its activity more than healthy cells for their life, and exploiting it for developing multiple oncological hallmarks. However, little is known about CK2 contribution to the metabolic rewiring of cancer cells. With this study we aimed at shedding some light on it, especially focusing on the CK2 role in the glycolytic onco-phenotype. By analyzing neuroblastoma and osteosarcoma cell lines depleted of either one (α) or the other (α’) CK2 catalytic subunit, we also aimed at disclosing possible pro-tumor functions which are specific of a CK2 isoform. Our results suggest that both CK2 α and α’ contribute to cell proliferation, survival and tumorigenicity. The analyzed metabolic features disclosed a role of CK2 in tumor metabolism, and suggest prominent functions for CK2 α isoform. Results were also confirmed by CK2 pharmacological inhibition. Overall, our study provides new information on the mechanism of cancer cells addiction to CK2 and on its isoform-specific functions, with fundamental implications for improving future therapeutic strategies based on CK2 targeting.


1978 ◽  
Vol 5 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Dennis Blakeslee ◽  
Michael J. Raymond ◽  
Terry Ward ◽  
Pamela Bandy

2018 ◽  
Vol 109 (11) ◽  
pp. 3503-3518 ◽  
Author(s):  
Ming‐Min Chang ◽  
Meng‐Shao Lai ◽  
Siou‐Ying Hong ◽  
Bo‐Syong Pan ◽  
Hsin Huang ◽  
...  

2017 ◽  
Vol 4 ◽  
pp. 165-171 ◽  
Author(s):  
Suthat Chottanapund ◽  
M.B.M. Van Duursen ◽  
Anne Zwartsen ◽  
Supatchaya Timtavorn ◽  
Panida Navasumrit ◽  
...  

1988 ◽  
Vol 155 (1) ◽  
pp. 373-378 ◽  
Author(s):  
Kirsi Polvinen ◽  
Riitta Sinervirta ◽  
Leena Alhonen ◽  
Juhani Jänne

Sign in / Sign up

Export Citation Format

Share Document