scholarly journals Bean dwarf mosaic virus: a model system for the study of viral movement

2010 ◽  
Vol 11 (4) ◽  
pp. 451-461 ◽  
Author(s):  
AVNER LEVY ◽  
TZVI TZFIRA
2006 ◽  
Vol 19 (3) ◽  
pp. 304-312 ◽  
Author(s):  
Li Wang ◽  
Alan Eggenberger ◽  
John Hill ◽  
Adam J. Bogdanove

Soybean mosaic virus (SMV) was adapted for transgene expression in soybean and used to examine the function of avirulence genes avrB and avrPto of Pseudomonas syringae pvs. glycinea and tomato, respectively. A cloning site was introduced between the P1 and HC-Pro genes in 35S-driven infectious cDNAs of strains SMV-N and SMV-G7. Insertion of the uidA gene or the green fluorescent protein gene into either modified cDNA and bombardment into primary leaves resulted in systemic expression that reflected the pattern of viral movement into uninoculated leaves. Insertion of avrB blocked symptom development and detectable viral movement in cv. Harosoy, which carries the Rpg1-b resistance gene corresponding to avrB, but not in cvs. Keburi or Hurrelbrink, which lack Rpg1-b. In Keburi and Hurrelbrink, symptoms caused by SMV carrying avrB appeared more quickly and were more severe than those caused by the virus without avrB. Insertion of avrPto enhanced symptoms in Harosoy, Hurrelbrink, and Keburi. This result was unexpected because avrPto was reported to confer avirulence on P. syringae pv. glycinea inoculated to Harosoy. We inoculated Harosoy with P. syringae pv. glycinea expressing avrPto, but observed no hypersensitive reaction, avrPto-dependent induction of pathogenesis-related protein 1a, or limitation of bacterial population growth. In Hurrelbrink, avrPto enhanced bacterial multiplication and exacerbated symptoms. Our results establish SMV as an expression vector for soybean. They demonstrate that resistance triggered by avrB is effective against SMV, and that avrB and avrPto have general virulence effects in soybean. The results also led to a reevaluation of the reported avirulence activity of avrPto in this plant.


2001 ◽  
Vol 75 (17) ◽  
pp. 8045-8053 ◽  
Author(s):  
Hideaki Nagano ◽  
Kazuyuki Mise ◽  
Iwao Furusawa ◽  
Tetsuro Okuno

ABSTRACT Plant viruses have movement protein (MP) gene(s) essential for cell-to-cell movement in hosts. Cucumber mosaic virus (CMV) requires its own coat protein (CP) in addition to the MP for intercellular movement. Our present results using variants of both CMV and a chimeric Brome mosaic virus with the CMV MP gene revealed that CMV MP truncated in its C-terminal 33 amino acids has the ability to mediate viral movement independently of CP. Coexpression of the intact and truncated CMV MPs extremely reduced movement of the chimeric viruses, suggesting that these heterogeneous CMV MPs function antagonistically. Sequential deletion analyses of the CMV MP revealed that the dispensability of CP occurred when the C-terminal deletion ranged between 31 and 36 amino acids and that shorter deletion impaired the ability of the MP to promote viral movement. This is the first report that a region of MP determines the requirement of CP in cell-to-cell movement of a plant virus.


2001 ◽  
Vol 75 (18) ◽  
pp. 8831-8836 ◽  
Author(s):  
Kyotaro Hirashima ◽  
Yuichiro Watanabe

ABSTRACT Tobacco mosaic virus (TMV) encodes a 30-kDa movement protein (MP) which enables viral movement from cell to cell. It is, however, unclear whether the 126- and 183-kDa replicase proteins are involved in the cell-to-cell movement of TMV. In the course of our studies into TMV-R, a strain with a host range different from that of TMV-U1, we have obtained an interesting chimeric virus, UR-hel. The amino acid sequence differences between UR-hel and TMV-U1 are located only in the helicase-like domain of the replicase. Interestingly, UR-hel has a defect in its cell-to-cell movement. The replication of UR-hel showed a level of replication of the genome, synthesis, and accumulation of MP similar to that observed in TMV-U1-inoculated protoplasts. Such observations support the hypothesis that the replicase coding region may in some fashion be involved in cell-to-cell movement of TMV.


2000 ◽  
Vol 13 (3) ◽  
pp. 297-308 ◽  
Author(s):  
Yu-Ming Hou ◽  
Rick Sanders ◽  
Virgina M. Ursin ◽  
Robert L. Gilbertson

Transgenic tomato plants expressing wild-type or mutated BV1 or BC1 movement proteins from Bean dwarf mosaic virus (BDMV) were generated and examined for phenotypic effects and resistance to Tomato mottle virus (ToMoV). Fewer transgenic plants were recovered with the wild-type or mutated BC1 genes, compared with the wild-type or mutated BV1 genes. Transgenic tomato plants expressing the wild-type or mutated BV1 proteins appeared normal. Interestingly, although BDMV induces only a symptomless infection in tomato (i.e., BDMV is not well adapted to tomato), transgenic tomato plants expressing the BDMV BC1 protein showed a viral disease-like phenotype (i.e., stunted growth, and leaf mottling, curling, and distortion). This suggests that the symptomless phenotype of BDMV in tomato is not due to a host-specific defect in the BC1 protein. One transgenic line expressing the BC1 gene did not show the viral disease-like phenotype. This was associated with a deletion in the 3′ region of the gene, which resulted in expression of a truncated BC1 protein. Several R0 plants, expressing either wild-type or mutated BV1 or BC1 proteins, showed a significant delay in ToMoV infection, compared with non-transformed plants. R1 progeny plants also showed a significant delay in ToMoV infection, but this delay was less than that in the R0 parents. These results also demonstrate that expression of viral movement proteins, in transgenic plants, can have deleterious effects on various aspects of plant development.


2018 ◽  
Vol 5 (7) ◽  
pp. 1685-1693 ◽  
Author(s):  
Yi Hao ◽  
Wen Yuan ◽  
Chuanxin Ma ◽  
Jason C. White ◽  
Zetian Zhang ◽  
...  

Tobacco (Nicotiana benthamiana) and Turnip mosaic virus (TuMV) were used as a model system to investigate the potential of engineered nanomaterials (ENMs) for promoting crop growth and resistance to viral infection.


2007 ◽  
Vol 20 (6) ◽  
pp. 671-681 ◽  
Author(s):  
Masanori Kaido ◽  
Yosuke Inoue ◽  
Yoshika Takeda ◽  
Kazuhiko Sugiyama ◽  
Atsushi Takeda ◽  
...  

The 3a movement protein (MP) plays a central role in the movement of the RNA plant virus, Brome mosaic virus (BMV). To identify host factor genes involved in viral movement, a cDNA library of Nicotiana benthamiana, a systemic host for BMV, was screened with far-Western blotting using a recombinant BMV MP as probe. One positive clone encoded a protein with sequence similarity to the α chain of nascent-polypeptide-associated complex from various organisms, which is proposed to contribute to the fidelity of translocation of newly synthesized proteins. The orthologous gene from N. benthamiana was designated NbNACa1. The binding of NbNACa1 to BMV MP was confirmed in vivo with an agroinfiltration-immunoprecipitation assay. To investigate the involvement of NbNACa1 in BMV multiplication, NbNACa1-silenced (GSNAC) transgenic N. benthamiana plants were produced. Downregulation of NbNACa1 expression reduced virus accumulation in inoculated leaves but not in protoplasts. A microprojectile bombardment assay to monitor BMV-MP-assisted viral movement demonstrated reduced virus spread in GSNAC plants. The localization to the cell wall of BMV MP fused to green fluorescent protein was delayed in GSNAC plants. From these results, we propose that NbNACa1 is involved in BMV cell-to-cell movement through the regulation of BMV MP localization to the plasmodesmata.


Sign in / Sign up

Export Citation Format

Share Document