The role of human endogenous retroviruses in melanoma

2009 ◽  
Vol 161 (6) ◽  
pp. 1225-1231 ◽  
Author(s):  
S. Singh ◽  
S. Kaye ◽  
M.E. Gore ◽  
M.O. McClure ◽  
C.B. Bunker
2019 ◽  
Vol 20 (23) ◽  
pp. 6050 ◽  
Author(s):  
Balestrieri ◽  
Matteucci ◽  
Cipriani ◽  
Grelli ◽  
Ricceri ◽  
...  

Human endogenous retroviruses (HERVs) are genetic elements resulting from relics of ancestral infection of germline cells, now recognized as cofactors in the etiology of several complex diseases. Here we present a review of findings supporting the role of the abnormal HERVs activity in neurodevelopmental disorders. The derailment of brain development underlies numerous neuropsychiatric conditions, likely starting during prenatal life and carrying on during subsequent maturation of the brain. Autism spectrum disorders, attention deficit hyperactivity disorders, and schizophrenia are neurodevelopmental disorders that arise clinically during early childhood or adolescence, currently attributed to the interplay among genetic vulnerability, environmental risk factors, and maternal immune activation. The role of HERVs in human embryogenesis, their intrinsic responsiveness to external stimuli, and the interaction with the immune system support the involvement of HERVs in the derailed neurodevelopmental process. Although definitive proofs that HERVs are involved in neurobehavioral alterations are still lacking, both preclinical models and human studies indicate that the abnormal expression of ERVs could represent a neurodevelopmental disorders-associated biological trait in affected individuals and their parents.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3751-3751 ◽  
Author(s):  
Scott D. Gitlin ◽  
Rafael Contreras- Galindo ◽  
Mark H. Kaplan ◽  
David M. Markovitz

Abstract Actively replicating retroviruses entered hominid species millions of years ago and through mutations preventing replication now exist as 8% of the human genome. Active retroviral particles and antigens from the supposedly dormant human endogenous retrovirus, HERV-K (HML2), have been identified in several cancer cell lines. We have recently demonstrated very high RNA titers of HERV-K (HML2) in the plasma of HIV positive individuals by nucleic acid sequence-based amplification (NASBA) and RT-PCR. We now demonstrate very high HERV-K (HML2) RNA titers in the plasma of patients with HIV positive and HIV negative non-Hodgkin lymphoma (NHL) and in Hodgkin Disease (HD), but not in normal individuals. Different copies of HERV-K (HML-2) present throughout the human genome exist as Type 1 viruses which encode a new oncoprotein, NP9, or as Type 2 viruses which encode a functional envelope (env) and express the Rec oncoprotein. Both Types 1 and 2 viruses appear in NHLs but only Type 1 appears in the plasma of those with HD. HERV-K (HML2) Env and Gag proteins, Env and Gag RNA, and Reverse Transcriptase (RT) activity are isolated from patients with a variety of NHLs, but not in normal controls or in patients with non-malignant diseases. Viral titers dramatically decrease, up to an approximately 7.5 log drop, when patients with NHL or HD go into remission following treatment. To further establish the presence of functional viruses in NHL and HD, immuno-gold electron microscopy allowed demonstration of HERV-K (HML2) particles in the plasma of lymphoma patients. Preliminary analysis of the effect of antiretroviral agents on cell lines infected with HERV-K (HML2) demonstrate a drug class-specific reduction in viral expression at drug concentration levels that range from 0.125 – 1 mcg/mL. In conclusion, we have demonstrated evidence that human endogenous retroviruses are found in the plasma of patients with NHL and HD, suggesting that these viruses, previously presumed to be inactive, may play a role in lymphoma pathogenesis. The observation that viral expression parallels declines in disease activity with treatment of disease may allow use of HERV-K (HML2) expression as a biomarker of lymphoma activity. The role of the HERV-K (HML2)-encoded oncoproteins in disease pathogenesis is under study, as is the potential role of antiretroviral therapy for these malignancies.


Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 464
Author(s):  
Vera R. Lezhnyova ◽  
Ekaterina V. Martynova ◽  
Timur I. Khaiboullin ◽  
Richard A. Urbanowicz ◽  
Svetlana F. Khaiboullina ◽  
...  

Two human endogenous retroviruses of the HERV-W family can act as cofactors triggering multiple sclerosis (MS): MS-associated retrovirus (MSRV) and ERVWE1. Endogenous retroviral elements are believed to have integrated in our ancestors’ DNA millions of years ago. Their involvement in the pathogenesis of various diseases, including neurodegenerative pathologies, has been demonstrated. Numerous studies have shown a correlation between the deterioration of patients’ health and increased expression of endogenous retroviruses. The exact causes and mechanisms of endogenous retroviruses activation remains unknown, which hampers development of therapeutics. In this review, we will summarize the main characteristics of human endogenous W retroviruses and describe the putative mechanisms of activation, including epigenetic mechanisms, humoral factors as well as the role of the exogenous viral infections.


Apmis ◽  
2016 ◽  
Vol 124 (1-2) ◽  
pp. 105-115 ◽  
Author(s):  
Kristien Mortelmans ◽  
Feng Wang-Johanning ◽  
Gary L. Johanning

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
David Díaz-Carballo ◽  
Sahitya Saka ◽  
Ali H. Acikelli ◽  
Ekaterina Homp ◽  
Julia Erwes ◽  
...  

AbstractIn this work, we are reporting that “Shock and Kill”, a therapeutic approach designed to eliminate latent HIV from cell reservoirs, is extrapolatable to cancer therapy. This is based on the observation that malignant cells express a spectrum of human endogenous retroviral elements (HERVs) which can be transcriptionally boosted by HDAC inhibitors. The endoretroviral gene HERV-V2 codes for an envelope protein, which resembles syncytins. It is significantly overexpressed upon exposure to HDAC inhibitors and can be effectively targeted by simultaneous application of TLR7/8 agonists, triggering intrinsic apoptosis. We demonstrated that this synergistic cytotoxic effect was accompanied by the functional disruption of the TLR7/8-NFκB, Akt/PKB, and Ras-MEK-ERK signalling pathways. CRISPR/Cas9 ablation of TLR7 and HERV-V1/V2 curtailed apoptosis significantly, proving the pivotal role of these elements in driving cell death. The effectiveness of this new approach was confirmed in ovarian tumour xenograft studies, revealing a promising avenue for future cancer therapies.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 610 ◽  
Author(s):  
Vincent Alcazer ◽  
Paola Bonaventura ◽  
Stephane Depil

Human Endogenous Retroviruses (HERVs) are accounting for 8% of the human genome. These sequences are remnants from ancient germline infections by exogenous retroviruses. After million years of evolution and multiple integrations, HERVs have acquired many damages rendering them defective. At steady state, HERVs are mostly localized in the heterochromatin and silenced by methylation. Multiple conditions have been described to induce their reactivation, including auto-immune diseases and cancers. HERVs re-expression leads to RNA (simple and double-stranded) and DNA production (by reverse transcription), modulating the innate immune response. Some studies also argue for a role of HERVs in shaping the evolution of innate immunity, notably in the development of the interferon response. However, their exact role in the innate immune response, particularly in cancer, remains to be defined. In this review, we see how HERVs could be key-players in mounting an antitumor immune response. After a brief introduction on HERVs characteristics and biology, we review the different mechanisms by which HERVs can interact with the immune system, with a focus on the innate response. We then discuss the potential impact of HERVs expression on the innate immune response in cancer.


Sign in / Sign up

Export Citation Format

Share Document