scholarly journals Effects of a mushy transition zone at the inner core boundary on the Slichter modes

1997 ◽  
Vol 131 (3) ◽  
pp. 607-617 ◽  
Author(s):  
Z. R. Peng
1973 ◽  
Vol 63 (3) ◽  
pp. 1073-1105 ◽  
Author(s):  
Anthony Qamar

abstract Travel times and amplitudes of PKP and PKKP from three earthquakes and four underground nuclear explosions are presented. Observations of reflected core waves at nearly normal angles of incidence provide new constraints on the average velocities in the inner and outer core. Interpretation of these data suggests that several small but significant changes to Bolt's (1962) core velocity model (T2) are necessary. A revised velocity model KOR5 is given together with the derived travel times that are consistent with the 1968 tables for P. Model KOR5 possesses a velocity in the transition zone which is 112 per cent lower than that in model T2. In addition, KOR5 has a velocity jump at the transition zone boundary (r = 1782 km) of 0.013 km/sec and a jump at the inner core boundary (r = 1213 km) of 0.6 km/sec. These values are, respectively, 1/20 and 2/3 of the corresponding model T2 values.


1971 ◽  
Vol 61 (2) ◽  
pp. 429-456 ◽  
Author(s):  
Goetz G. R. Buchbinder

abstract Travel times and amplitudes of PKP, P2KP and higher multiple K phases are determined from a worldwide distribution of short-period seismograms. The sources are one explosion in Novaya-Zemlya and seven earthquakes, consisting of one intermediate focus event in the New Hebrides, and deep-focus events in Fiji, Java, Kermadec Islands, and Peru. The data are used to determine a new velocity model of the lowest mantle and the core. In the new velocity model 132, the velocity of the bottom of the mantle is 13.44 km/sec; the core mantle boundary is placed at 2892 ± 2 km. The velocity model of the core produces the PKP caustic B1 at 143° and the P2KP caustic B2 at −125°. A velocity discontinuity of 0.01 km/sec at a depth of 4550 km represents the top of the transition zone to account for the earliest forerunners of PKP. To account for the later forerunners a second discontinuity of 0.02 km/sec is placed at a depth of 4850 km. Since the forerunner data could not be resolved into branches, neither discontinuity is well defined. The top of the inner core boundary is placed at a depth of 5145 km with an uncertainty of at least 10 km and represents a discontinuity of 0.576 km/sec. Older core models have transition zone discontinuities an order of magnitude larger than those of model 132 with a discontinuity at the inner core boundary of about 1 km/sec. The smaller velocity discontinuities are a result of interpreting the amplitudes and travel times of PKP so that the turning points D and G are located at 120° and 140°, respectively, rather than at 110° and 125° as in previous interpretations. Amplitude ratios of PKP phases yield an inner core Q of about 400 and amplitude ratios of P3KP, P4KP and P5KP result in an outer core Q of about 4000.


Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 202-205
Author(s):  
Richard G. Kraus ◽  
Russell J. Hemley ◽  
Suzanne J. Ali ◽  
Jonathan L. Belof ◽  
Lorin X. Benedict ◽  
...  

Terapascal iron-melting temperature The pressure and temperature conditions at which iron melts are important for terrestrial planets because they determine the size of the liquid metal core, an important factor for understanding the potential for generating a radiation-shielding magnetic field. Kraus et al . used laser-driven shock to determine the iron-melt curve up to a pressure of 1000 gigapascals (see the Perspective by Zhang and Lin). This value is about three times that of the Earth’s inner core boundary. The authors found that the liquid metal core lasted the longest for Earth-like planets four to six times larger in mass than the Earth. —BG


1958 ◽  
Vol 48 (4) ◽  
pp. 301-314
Author(s):  
B. Gutenberg

Abstract More than 700 seismograms of 39 shocks recorded mainly in southern California at epicentral distances between 105 and 140 degrees are used to investigate records of phases which have penetrated the earth's core. Properties of PKIKP, SKP, SKIKP, PKS, and PKIKS are discussed. Portions of travel-time curves of these phases are revised. Travel times of waves starting and ending at the surface of the core, and wave velocities in the core, are recalculated. Between about 1,500 and 1,200 km. from the earth's center in the transition zone from the liquid outer to the probably solid inner core, waves having lengths of the order of 10 km. travel faster than longer waves. This is probably caused by a rather rapid increase in viscosity toward the earth's center in this transition zone.


2015 ◽  
Vol 112 (39) ◽  
pp. 12042-12045 ◽  
Author(s):  
Giuliana Aquilanti ◽  
Angela Trapananti ◽  
Amol Karandikar ◽  
Innokenty Kantor ◽  
Carlo Marini ◽  
...  

Temperature, thermal history, and dynamics of Earth rely critically on the knowledge of the melting temperature of iron at the pressure conditions of the inner core boundary (ICB) where the geotherm crosses the melting curve. The literature on this subject is overwhelming, and no consensus has been reached, with a very large disagreement of the order of 2,000 K for the ICB temperature. Here we report new data on the melting temperature of iron in a laser-heated diamond anvil cell to 103 GPa obtained by X-ray absorption spectroscopy, a technique rarely used at such conditions. The modifications of the onset of the absorption spectra are used as a reliable melting criterion regardless of the solid phase from which the solid to liquid transition takes place. Our results show a melting temperature of iron in agreement with most previous studies up to 100 GPa, namely of 3,090 K at 103 GPa.


Sign in / Sign up

Export Citation Format

Share Document